

    
      
          
            
  
CGAT 0.6.2 - Computational Genomics Analysis Tools

CGAT is a collection of tools for the computational genomicist written
in the Python language (Should work with Python 2.7, but we only actively
support Python 3.6+).
The tools have been developed and accumulated
in various genome projects (Heger & Ponting, 2007 [https://www.ncbi.nlm.nih.gov/pubmed/17989258], Warren et al.,
2008 [https://www.nature.com/articles/nature06936]) and NGS projects (Ramagopalan et al., 2010 [https://www.ncbi.nlm.nih.gov/pubmed/20736230]). The tools are
in continuous development. The tools work from the command line, but can readily be
installed within frameworks such as Galaxy [https://main.g2.bx.psu.edu/].

The documentation below covers the script published in
Bioinformatics [http://www.ncbi.nlm.nih.gov/pubmed/24395753].

Detailed instructions on installation, on usage and a tool reference
are below, followed by a Quickstart guide.



	Mission statement
	Other toolkits with similar functionality





	Installation instructions
	Quick installation





	Using CGAT Tools
	Command line usage

	Indexing genomes

	Pipeline usage





	Tool map

	Tool reference
	Genomic intervals/features

	Gene sets

	Sequence data

	NGS data

	Variants

	Genomics





	Contributing to CGAT code
	Checklist for new scripts/modules

	Building extensions

	Writing recipes

	Writing pipelines





	Reference
	Repository layout

	API





	Release Notes
	Release 0.4.0










Quickstart

Please install the CGAT-apps using the following Installation instructions
for dependencies and troubleshooting.

CGAT-apps are run from the unix command line. Lets assume we have
the results of the binding locations of a ChIP-Seq experiment
(chipseq.hg19.bed) in bed format and we want to know, how many
binding locations are intronic, intergenic and within exons.

Thus, we need to create a set of genomic annotations denoting
intronic, intergenic regions, etc. with respect to a reference gene
set.  Here, we download the GENCODE geneset (Harrow et al., 2012) in
GTF format from ENSEMBL (Flicek et al., 2013).

The following unix statement downloads the ENSEMBL gene set containing
over-lapping transcripts, and outputs a set of non-overlapping genomic
annotations in gff format (annotations.gff) by piping the data
through various CGAT tools:

wget ftp://ftp.ensembl.org/pub/release-72/gtf/homo_sapiens/Homo_sapiens.GRCh37.72.gtf.gz
| gunzip
| awk '$2 == "protein_coding"'
| cgat gff2ff --genome-file=hg19 --method=sanitize --skip-missing
| cgat gtf2gtf --method=sort --sort-order=gene
| cgat gtf2gtf --method=merge-exons --with-utr
| cgat gtf2gtf --method=filter --filter-method=longest-gene
| cgat gtf2gtf --method=sort --sort-order=position
| cgat gtf2gff --genome-file=hg19 --flank-size=5000 --method=genome
| gzip
> annotations.gff.gz






Note

The statements above need an indexed genome. To create such an
indexed genome for hg19, type the following:

wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
| index_fasta.py hg19 - > hg19.log







CGAT-apps can be chained into a single work flow using unix
pipes. The above sequence of commands in turn (1) reconciles UCSC and
ENSEMBL naming schemes for chromosome names, (2) merges all exons of
alternative transcripts per gene, (3) keeps the longest gene in case
of overlapping genes and (4) annotates exonic, intronic, intergenic
and flanking region (size=5kb) within and between genes.

Note that the creation of annotations.gff.gz goes beyond
simple interval intersection, as gene structures have to be normalized
from multiple possible alternative transcripts to a single transcript
that is chosen by the user depending on what is most relevant for the
analysis.

Choosing different options can provide different sets of
answers. Instead of merging all exons per gene, the longest transcript
might be selected by replacing (2) with gtf2gtf
--method=filter --filter-method=longest-transcript.
Or, instead of genomic annotations, regulatory domains such as defined by GREAT might be obtained by
removing (3) and replacing (4) with gtf2gff --method=great-domains.

The generated annotations in annotations.gff can then be used to count
the number of transcription factor binding sites using bed-tools or
other interval intersections. Here, we will use another CGAT tool,
gtf2table, to do the counting and classification:

zcat /ifs/devel/gat/tutorial/data/srf.hg19.bed
| cgat bed2gff --as-gtf
| cgat gtf2table --counter=classifier-chipseq --gff-file=annotations.gff.gz





The scripts follow a consistent naming scheme centered around common
genomic formats. Because of the common genomic formats, the tools can
be easily combined with other tools such as bedtools [http://bedtools.readthedocs.org/en/latest/] (Quinlan and
Hall, 2010) or UCSC Tools [http://genome.ucsc.edu/admin/git.html] (Kuhn et al. 2013).



Developer’s guide



	Contributing to CGAT code
	Checklist for new scripts/modules

	Building extensions

	Writing recipes

	Writing pipelines





	Testing
	Regression testing of scripts

	Testing for style

	Testing for import

	Testing modules

	Code coverage





	Style Guide
	Coding style

	Where to put code

	Pipelines

	Other guidelines

	Script options

	Documentation





	Documentation
	Overview

	Building the documentation

	Writing documentation

	Adding documentation

	Requisites

	Trouble-shooting





	Reference
	Repository layout

	API





	Importing CGAT scripts into galaxy
	General Preparation

	Adding a script manually

	Automatic conversion of scripts











Glossary



	Glossary
	File formats

	Other terms











Disclaimer

This collection of scripts is the outcome of 10 years working in various
fields in bioinformatics. It contains both the good, the bad and the ugly.
Use at your own risk.





            

          

      

      

    

  

    
      
          
            
  
Mission statement

The CGAT-apps code collection has been written over several years in
the context of comparative genomics and more recently next-generation
sequencing analysis.

The aim of the toolkit is to solve practical problems in the analysis
of genomic data. The focus of the toolkit is to facilitate the
interpretation of genomic data in a biological context. Furthermore,
as a training institution our aim is to write code that is well
structured and can serve as an introduction to advanced bioinformatic
scripting for biologists.


Other toolkits with similar functionality

The CGAT code collection extends, complements but also overlaps
various other toolkits. As all toolkits, and ours, continue to evolve,
this is a very dynamic relationship. For example, our workflows frequently
use other toolkits, in particular bedtools [http://bedtools.readthedocs.org/en/latest/] and the UCSC tools [http://genome.ucsc.edu/admin/git.html], for
high-performance computations. Usage of common genomic file formats
and a command line interface ensures compatibility.

Below is a list of toolkits with similar or complementarity
functionality to the CGAT code collection and quotes from their
respective web-sites:


	bedtools [http://bedtools.readthedocs.org/en/latest/]
The BEDTools utilities allow one to address common genomics tasks such
as finding feature overlaps and computing coverage. The utilities are
largely based on four widely-used file formats: BED, GFF/GTF, VCF, and
SAM/BAM. Using BEDTools, one can develop sophisticated pipelines that
answer complicated research questions by “streaming” several BEDTools
together.


	samtools [http://samtools.sourceforge.net/]
SAM Tools provide various utilities for manipulating alignments in
the SAM format, including sorting, merging, indexing and generating
alignments in a per-position format.


	UCSC tools [http://genome.ucsc.edu/admin/git.html]
Jim Kent’s [http://users.soe.ucsc.edu/~kent/] genomic utilities
for working with genomic features and alignments.


	EMBOSS [http://emboss.sourceforge.net/]
EMBOSS is “The European Molecular Biology Open Software Suite”. EMBOSS
is a free Open Source software analysis package specially developed
for the needs of the molecular biology (e.g. EMBnet) user
community. The software automatically copes with data in a variety of
formats and even allows transparent retrieval of sequence data from
the web. Also, as extensive libraries are provided with the package,
it is a platform to allow other scientists to develop and release
software in true open source spirit. EMBOSS also integrates a range of
currently available packages and tools for sequence analysis into a
seamless whole. EMBOSS breaks the historical trend towards commercial
software packages.


	GROK [http://csbi.ltdk.helsinki.fi/grok/]
GROK (Genomic Region Operation Toolkit) is “Swiss Army knife” library
for processing genomic interval data. GROK operates on genomic
regions, annotated chromosomal intervals that represent sequencing
short reads, gene locations, ChIP-seq peaks or other genomic
features. Applications of GROK include file format conversions, set
operations, overlap queries, and filtering and transformation
operations. Supported file formats include BAM/SAM, BED, BedGraph,
CSV, FASTQ, GFF/GTF, VCF and Wiggle.


	biopieces [https://code.google.com/p/biopieces/]
The Biopieces are a collection of bioinformatics tools that can be
pieced together in a very easy and flexible manner to perform both
simple and complex tasks. The Biopieces work on a data stream in such
a way that the data stream can be passed through several different
Biopieces, each performing one specific task: modifying or adding
records to the data stream, creating plots, or uploading data to
databases and web services.


	fastx-toolkit [http://hannonlab.cshl.edu/fastx_toolkit/]
The FASTX-Toolkit is a collection of command line tools for
Short-Reads FASTA/FASTQ files preprocessing.








            

          

      

      

    

  

    
      
          
            
  
Installation instructions

The section below describes how to install the cgat-apps. We distinguish between two different installation
types: production and development. The former refers to the released version of our tools, which can be installed
using pip or conda, and is the recommended installation for users. The latter refers to the installation
of the development version of the apps, which can be used to make changes to our code base.

Please note that we can not test our code on all systems and configurations out there so please bear with us.


Quick installation


Install using Conda



Conda Installation

The preferred method to install CGAT Apps is using the installation script, which uses
mamba [https://github.com/mamba-org/mamba], the fast C implementation of conda [https://conda.io].

To install cgat-apps using mamba:

mamba install -c conda-forge -c bioconda cgat-apps







Developers: try the installation script

Here are the steps:

# Install conda and mamba according the the documentation. Next
# install the conda packages for cgat-apps to work
conda env create -f conda/environments/cgat-apps.yml

# enable the conda environment
conda activate cgat-a

# Install the development version of cgat-apps
python setup.py develop

# finally, please run the cgat command-line tool to check the installation:
cgat --help





The installation script will put everything under the specified location. The aim is to provide a portable
installation that does not interfere with the existing software. As a result, you will get a conda environment
working with CGAT Apps which can be enabled on demand according to your needs.



Install using pip

You can also use pip [https://pypi.python.org/pypi/CGAT] to install the CGAT scripts. To go down this route, please type:

pip install cgat





However, cgat-apps depends on numerous other python packages which themselves might require
manual intervention.






            

          

      

      

    

  

    
      
          
            
  
Using CGAT Tools


Command line usage

CGAT tools are written for command line usage with a consistent
interface that makes them amenable to integration in pipelines.
Tools can be accessed through the cgat front-end that will
be installed in your PATH.

To get a list of all available commands, type:

cgat --help





Command line help for individual tools is available through
each tool’s --help option:

cgat gff2gff --help






Logging

CGAT scripts output logging information as comments starting with a
# into stdout or into a separate log file (--log).

Below is an example of logging output:

# output generated by /ifs/devel/andreas/cgat/beds2beds.py --force-output --exclusive-overlap --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz
# job started at Thu Mar 29 13:06:33 2012 on cgat150.anat.ox.ac.uk -- e1c16e80-03a1-4023-9417-f3e44e33bdcd
# pid: 16649, system: Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64
# exclusive                               : True
# filename_update                         : None
# ignore_strand                           : False
# loglevel                                : 1
# method                                  : unmerged-combinations
# output_filename_pattern                 : 030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz
# output_force                            : True
# pattern_id                              : (.*).bed.gz
# stderr                                  : <open file \'<stderr>\', mode \'w\' at 0x2ba70e0c2270>
# stdin                                   : <open file \'<stdin>\', mode \'r\' at 0x2ba70e0c2150>
# stdlog                                  : <open file \'030m.intersection.tsv.log\', mode \'a\' at 0x1f1a810>
# stdout                                  : <open file \'<stdout>\', mode \'w\' at 0x2ba70e0c21e0>
# timeit_file                             : None
# timeit_header                           : None
# timeit_name                             : all
# tracks                                  : None





The header contains information about:



	the script name (beds2beds.py)


	the command line options (--force-output --exclusive-overlap --method=unmerged-combinations --output-filename-pattern=030m.intersection.tsv.dir/030m.intersection.tsv-%s.bed.gz --log=030m.intersection.tsv.log Irf5-030m-R1.bed.gz Rela-030m-R1.bed.gz)


	the time when the job was started (Thu Mar 29 13:06:33 2012)


	the location it was executed (cgat150.anat.ox.ac.uk)


	a unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)


	the pid of the job (16649)


	the system specification (Linux 2.6.32-220.7.1.el6.x86_64 #1 SMP Fri Feb 10 15:22:22 EST 2012 x86_64)







Once completed successfully, a script will output to the logfile. Below is typical output:

# job finished in 11 seconds at Thu Mar 29 13:06:44 2012 -- 11.36  0.45  0.00  0.01 -- e1c16e80-03a1-4023-9417-f3e44e33bdcd





The footer contains information about:



	the job has finished (job finished)


	the time it took to execute (11 seconds)


	when it completed (Thu Mar 29 13:06:44 2012)


	
	some benchmarking information (11.36  0.45  0.00  0.01) which is
	user time, system time, child user time, child system time.







	the unique job id (e1c16e80-03a1-4023-9417-f3e44e33bdcd)







The unique job id can be used to easily retrieve matching information from a concatenation of
log files.

The logging level can be determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.



I/O redirection

Most scripts work by reading data from stdin and outputting
data to stdout. Both can be redirected to files with the
-I/--stdin and -O/--stdout options. stderr can be
redirected with -E/--stderr.




Indexing genomes

Many CGAT tools require genomic information, some require the actual
genomic sequence, but many require information about chromosome sizes.
Thus, many tools have the obligatory option --genome-file.

The genome-file argument points to an indexed fasta file. CGAT
tools can read two different indices, either files indexed using
the supplied index_fasta.py - Index fasta formatted files script or using the samtools [http://samtools.sourceforge.net/]
faidx command.



Pipeline usage

We use a light-weight workflow system called ruffus [http://www.ruffus.org.uk/], but others
are equally possible such as galaxy [https://main.g2.bx.psu.edu/] (see GalaxyInstallation).
These tools allow CGAT tools to run in an automated fashion.

Using unix pipes, CGAT tools can also be easily run in a parallel
fashion. For example, we have a script called farm.py (not part
of the CGAT collection, but within the CGAT repository), that allows
to split input data and run separate chunks on our compute
cluster. Below is a simple example of running the command:

zcat geneset.gtf.gz
| cgat gtf2table --counter=length --log=log |
gzip > out.tsv.gz





in parallel on the cluster, running one job per chromosome:

zcat geneset.gtf.gz
| farm.py --split-at-column=1
        "cgat gtf2table --counter=length --log=log"
| gzip
> out.tsv.gz









            

          

      

      

    

  

    
      
          
            
  
Tool map

This page contains a graph visualization of some of the tools
within the cgat-apps collection.

Click to view the [image: Map]




            

          

      

      

    

  

    
      
          
            
  
Tool reference

This page summarizes prominent tools within the CGAT Code
collection. The tools are grouped losely by functionality.


Genomic intervals/features


	beds2counts - compute overlap stats between multiple bed files
	Compute overlap statistics of multiple bed files.



	bed2fasta.py - get sequences from bed file
	Transform interval data in a bed formatted file into a
fasta formatted file of sequence data.



	bed2gff.py - convert bed to gff/gtf
	Convert between interval data. Convert a bed formatted
file to a gff or gtf formatted file.



	gff2gff.py - manipulate gff files
	Work on gff formatted files with genomic features. This
tools sorts/renames feature files, reconciles chromosome names,
and more.



	bed2bed - manipulate bed files
	Filter or merge interval data in a bed formatted file.



	bed2graph.py - compute the overlap graph between two bed files
	Compare two sets of genomic intervals and output a list of
overlapping features.



	bed2stats.py - summary of bed file contents
	Compute summary statistics of genomic intervals.



	<no title>
	Annotate genomic intervals (composition, peak location, overlap, …)



	beds2beds.py - decompose bed files
	Decompose multiple sets of genomic intervals into various
intersections and unions.



	diff_bed.py - count differences between several bed files
	Compare multiple sets of interval data sets. The tools computes
all-vs-all pairwise overlap summaries. Permits incremental updates
of similarity table.



	gff2bed.py - convert from gff/gtf to bed
	Convert between formats



	split_gff - split a gff file into chunks
	Split a file in gff format into smaller files. The script ensures
that overlapping intervals remain in the same file.



	gff2coverage.py - compute genomic coverage of gff intervals
	This script computes the genomic coverage of intervals
in a gff formatted file. The coverage is computed
per feature.



	gff2fasta.py - output sequences from genomic features
	Output genomic sequences from intervals.



	gff2histogram.py - compute histograms from intervals in gff or bed format
	Compute distributions of interval sizes, intersegmental distances
and interval ovelap from list of intervals.



	gff2stats.py - count features, etc. in gff file
	Summarize features within a gff formatted file.



	gff2psl.py - convert from gff to psl
	Convert between formats.







Gene sets


	gtf2gff.py - convert a transcript set to genomic features
	Translate a gene set into genomic annotations such as introns,
intergenic regions, regulatory domains, etc.



	<no title>
	Annotate transcripts in a gtf formatted file. Annotations
can be in reference to a second gene set (fragments, extensions),
aligned reads (coverage, intron overrun, …) or densities.



	gtf2fasta.py - annotate genomic bases from a gene set
	Annotate each base in the genome according to its use within
a transcript. Outputs lists of junctions.



	gtf2gtf.py - manipulate transcript models
	merge exons/transcripts/genes, filter transcripts/genes, rename
transcripts/genes, …



	gtf2tsv.py - convert gtf file to a tab-separated table
	convert gene set in gtf format to tabular format.



	gtfs2tsv.py - compare two genesets
	Compare two gene sets - output common and unique lists of genes.



	diff_gtf.py - compute overlap between multiple gtf files
	Compare multiple gene sets. The tools computes all-vs-all pairwise
overlap of exons, bases and genes. Permits incremental updates of
similarity table.







Sequence data


	fastqs2fasta.py - interleave two fastq files
	Interleave paired reads from two fastq files into a single fasta file.



	index_fasta.py - Index fasta formatted files
	Build an index for a fasta file. Pre-requisite for many CGAT tools.



	fasta2kmercontent.py
	Count kmer content in a set of fasta sequences.



	<no title>
	Compute features of sequences in fasta formatted files



	diff_fasta.py - compare contents of two fasta files
	Compare two sets of sequences. Outputs missing, identical
and fragmented sequences.



	fasta2bed.py - segment sequences
	Segment sequences based on G+C content, gaps, …



	fastas2fasta.py - concatenate sequences from multiple fasta files
	Concatentate sequences from multiple files.



	fasta2variants.py - create sequence variants from a set of sequences
	In-silico creation of variants of protein coding
sequences.







NGS data


	bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes
	Compute meta-gene profiles from aligned reads in a bam
formatted file. Also accepts bed or bigwig
formatted files.



	bam2bam.py - modify bam files
	Operate on bam formatted files - filtering, stripping,
setting flags.



	bam2bed.py - convert bam formatted file to bed formatted file
	Convert bam formatted file of genomic alignments
into genomic intervals. Permits merging of paired read data
and filtering by insert-size.



	bam2fastq.py - output fastq files from a bam-file
	Save sequence and quality information from a bam
formatted file.



	bam2peakshape.py - compute peak shape features from a bam-file
	Compute read densities over a collection of intervals. Also
accepts bed or bigwig formatted files.



	Purpose
	Compute summary statistics of a bam formatted file.



	bam2wiggle.py - convert bam to wig/bigwig file
	Convert read coverage in a bam formatted file into
a wiggle or bigwig formatted file.



	bam_vs_gtf.py - compare bam file against gene set
	Compute stats on exon over-/underrun and spliced reads.



	bam_vs_bed.py - count context that reads map to
	Compute coverage of reads within multiple interval types.



	bam_vs_bam.py - compute coverage correlation between bam files
	Outputs side-by-side comparison of residue level counts
between multiple bam formatted files.



	fastq2fastq.py - manipulate fastq files
	Perform quality score conversion between fastq
formatted files.



	fastqs2fasta.py - interleave two fastq files
	Interleave paired end data.



	fastq2table.py - compute stats on reads in fastq files
	Output bases below quality threshold, number of N’s, quality score distribution.



	fastqs2fastqs.py - manipulate (merge/reconcile) fastq files
	Ensure that paired read fastq formatted files are consistent
after filtering on the individual files.



	diff_bam.py - compare multiple bam files against each other
	Perform read-by-read comparison of two bam-files.







Variants


	vcf2vcf.py - manipulate vcf files
	Sort a vcf file.







Genomics


	diff_chains.py - compare to chain formatted files
	How many residues to the same locations, do different locations,
etc.



	<no title>
	Output coverage statistics for a UCSC liftover chain file.









            

          

      

      

    

  

    
      
          
            
  
Contributing to CGAT code

We encourage everyone who uses parts of the CGAT code collection to
contribute. Contributions can take many forms: bugreports, bugfixes,
new scripts and pipelines, documentation, tests, etc. All
contributions are welcome.


Checklist for new scripts/modules

Before adding a new scripts to the repository, please check if the
following are true:


	The script performs a non-trivial task. If a one-line command line
entry using standard unix commands can give the same effect, avoid
adding a script to the repository.


	The script has a clear purpose. Scripts should follow the
unix philosophy [http://en.wikipedia.org/wiki/Unix_philosophy].
They should concentrate on one task and do it well. Ideally,
the major input and output can be read from and written to standard
input and standard output, respectively.


	The script follows the naming convention of cgat.tools.


	The scripts follows the Style Guide.


	The script implements the -h/--help options. Ideally, the
script has been derived from scripts/cgat_script_template.py.


	The script can be imported. Ideally, it imports without performing
any actions or writing output.


	The script is well documented and the documentation has been added
to the CGAT documentation. There should be an entry in
doc/scripts.rst and a file
doc/scripts/newscript.py.


	The script has at least one test case added to tests - and
the test works (see Testing).






Building extensions

Using pyximport [http://www.prescod.net/pyximport/], it is (relatively) straight-forward to add optimized
C-code to python scripts and, for example, access pysam internals and
the underlying samtools library. See for example Purpose.

To add an extension, the following needs to be in place:


	The main script (scripts/bam2stats.py). The important lines
in this script are:

try:
    import pyximport
    pyximport.install()
    import _bam2stats
except ImportError:
    import CGAT._bam2stats as _bam2stats





The snippet first attempts to build and import the extension by
setting up pyximport [http://www.prescod.net/pyximport/] and then importing the cython module as
_bam2stats.  In case this fails, as is the case for an
installed code, it looks for a pre-built extension (by
setup.py) in the CGAT pacakge.



	The cython implementation _bam2stats.pyx. This script
imports the pysam API via:

from csamtools cimport *





This statement imports, amongst others, AlignedRead into
the namespace. Speed can be gained from declaring variables. For
example, to efficiently iterate over a file, an
AlignedRead object is declared:

# loop over samfile
cdef AlignedRead read
for read in samfile:
    ...







	A pyxbld providing pyximport [http://www.prescod.net/pyximport/] with build information.
Required are the locations of the samtools and pysam header
libraries of a source installation of pysam plus the
csamtools.so shared library. For example:

def make_ext(modname, pyxfilename):
    from distutils.extension import Extension
    import pysam, os
    dirname = os.path.dirname( pysam.__file__ )[:-len("pysam")]
    return Extension(name = modname,
                     sources=[pyxfilename],
                     extra_link_args=[ os.path.join( dirname,
                            "csamtools.so")],
                     include_dirs =  pysam.get_include(),
                     define_macros = pysam.get_defines() )









If the script bam2stats.py is called the first time,
pyximport [http://www.prescod.net/pyximport/] will compile the cython [http://cython.org/] extension _bam2stats.pyx
and make it available to the script. Compilation requires a working
compiler and cython [http://cython.org/] installation.  Each time _bam2stats.pyx
is modified, a new compilation will take place.

pyximport [http://www.prescod.net/pyximport/] comes with cython [http://cython.org/].



Writing recipes

Recipes are short use cases demonstrating the use of one or more
CGAT utilities to address a specific problem.

Recipes should be written as ipython [http://ipython.org/] notebooks. The recipe notebooks
are stored in the recipes directory in the repository. Each
recipe is within its individual directory.  This minimizes
interference between each document, but also means that currently each
notebook needs a separate notebook server to be developped.

To build all recipes, type:

cd recipes
make html
make clean





This will build html files that are deposited in the docs directory.

The last cleaning up step is important in order to remove large files created
during the notebook execution.


Note

The commands above require the runipy python module. To install,
type:

pip install runipy







Data for recipes can be made available in www.cgat.org/downloads/public/cgat/recipes.
Ideally, recipes should make use of publicly available data sets such
as ENCODE.

Attempt to add a plot to the end of a recipe, using
R commands to create the plot within the notebook.



Writing pipelines

Best practice for CGAT pipelines:


	All non-trivial code should be extracted to modules or scripts.


	Modules should not access PARAMS dictionary directly, but
parameters should be passed to the function.


	Important processing steps where different external tools could
potentially be employed the design of the module classes should be
carefully considered to ensure consistent input and output file
formats for different tools. PipelineMapping provides a good
example for this.


	All production pipelines should include tests for consistency which
can be run automatically.


	Where appropriate pipelines should include a small test dataset
with published results for comparison. This dataset can be run on
each pipeline run and included in the pipeline report where it can
be used as a pipeline control.


	Periodic code review meetings where interested parties can agree of
major changes to production pipelines and associated modules – to
be arranged as required.


	The best way to manage pipeline improvements is by individuals
using pipelines taking responsibility for incremental
improvement. As best practice fellows should announce plans to
modify particular pipelines and modules on the CGAT members list to
avoid duplication of effort. Fellows should log the changes that
they make in a change log and document both modules and pipelines
in detail.


	Add a section with Requirements to all pipeline scripts and tools.
Only add them in files where the actual dependency arises, see
<no title>.








            

          

      

      

    

  

    
      
          
            
  
Reference

This section describes the layout of the code repository and contains
the API reference to the complete contents of the code collection.


Repository layout

The repository contains the following directories:


	scripts
	Scripts in the code collection.



	CGAT
	Modules for code shared between scripts in the collection.



	doc
	The sphinx [http://sphinx-doc.org/] documentation of the code repository.



	tests
	Testing code



	recipes
	ipython [http://ipython.org/] notebook recipes and tutorials.



	galaxy
	scripts to hook the code collection into galaxy [https://main.g2.bx.psu.edu/].







API



	Scripts
	Genomics

	Visualization

	Sequences and rates

	Matrices and Tables

	Stats

	Tools

	Unsorted





	Modules
	CGAT generic toolboxes

	Genomics

	Data processing

	CGAT infrastructure





	Glossary
	File formats

	Other terms





	Dependency graph









            

          

      

      

    

  

    
      
          
            
  
Scripts

This document contains all the scripts for/by CGAT.
Scripts are written to be called from the command line.


Genomics



	bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes

	bed2bed - manipulate bed files

	bed2gff.py - convert bed to gff/gtf

	gff2bed.py - convert from gff/gtf to bed

	diff_gtf.py - compute overlap between multiple gtf files

	gff2psl.py - convert from gff to psl

	gff2coverage.py - compute genomic coverage of gff intervals

	gff2fasta.py - output sequences from genomic features

	gff2gff.py - manipulate gff files

	gff2histogram.py - compute histograms from intervals in gff or bed format

	gff2stats.py - count features, etc. in gff file

	gtf2gff.py - convert a transcript set to genomic features

	gtf2gtf.py - manipulate transcript models

	gtf2fasta.py - annotate genomic bases from a gene set

	bam2wiggle.py - convert bam to wig/bigwig file

	bed2annotator.py - convert bed to annotator format

	bed2graph.py - compute the overlap graph between two bed files

	chain2psl.py - convert a chain file to a psl file

	diff_bed.py - count differences between several bed files

	fasta2bed.py - segment sequences

	gff2table.py - compute features for intersection of two gff files







Visualization






Sequences and rates



	index_fasta.py - Index fasta formatted files

	diff_fasta.py - compare contents of two fasta files







Matrices and Tables



	csvs2csv.py - join tables

	csv2csv.py - operate on tables

	csv2db.py - upload table to database

	csv_cut.py - select columns from a table

	csv_intersection.py - intersect two tables

	csv_rename.py - rename columns in a table

	csv_set.py - set operations on a table

	cat_tables.py - concatenate tables

	table2table.py - operate on tables







Stats



	data2histogram.py - histogram data in a table







Tools


Cluster and jobs



	split_file.py - split a file into parts







Other



	cgat_script_template.py - template for cgat scripts








Unsorted



	bam2UniquePairs.py - filter/report uniquely mapped read pairs from a (bwa!) bam-file

	bam2bam.py - modify bam files

	bam2bed.py - convert bam formatted file to bed formatted file

	bam2fastq.py - output fastq files from a bam-file

	bam2peakshape.py - compute peak shape features from a bam-file

	Purpose

	Usage

	Documentation

	Command line options

	beds2counts - compute overlap stats between multiple bed files

	bed2fasta.py - get sequences from bed file

	bed2stats.py - summary of bed file contents

	beds2beds.py - decompose bed files

	combine_tables.py - join tables

	diff_chains.py - compare to chain formatted files

	fasta2variants.py - create sequence variants from a set of sequences

	fastq2fastq.py - manipulate fastq files

	fastq2table.py - compute stats on reads in fastq files

	genome_bed.py - Create a bed file tiling a genome from a fai file

	index2bed.py - convert indexed fasta file to bed file

	medip_merge_intervals.py - merge differentially methylated regions

	cgat_rebuild_extensions.py - rebuild all cython extensions

	vcf2vcf.py - manipulate vcf files

	vcfstats_sqlite.py - reformat output of vcf-stats for database loading

	bam_vs_bam.py - compute coverage correlation between bam files

	bam_vs_bed.py - count context that reads map to

	bam_vs_gtf.py - compare bam file against gene set

	diff_bam.py - compare multiple bam files against each other

	fasta2fasta.py - operate on sequences

	fasta2kmercontent.py

	fastas2fasta.py - concatenate sequences from multiple fasta files

	fastqs2fasta.py - interleave two fastq files

	fastqs2fastqs.py - manipulate (merge/reconcile) fastq files

	gtf2tsv.py - convert gtf file to a tab-separated table

	gtfs2tsv.py - compare two genesets

	rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates

	split_gff - split a gff file into chunks

	bams2bam.py - merge genomic and transcriptome mapped bamfiles

	bed.plot.py - create genomic snapshots using the IGV Viewer

	cgat2dot.py - create a graph between cgat scripts

	cgat_get_options.py - build a sorted list of all options used in scripts

	cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code

	csv_select.py - select rows from a table

	fastq2summary.py - compute summary stats for a fastq file

	fastqs2fastq.py - merge reads in fastq files

	gff32gtf.py - various methods for converting gff3 files to gtf

	script_template.py

	split_fasta.py

	transfac2transfac.py - filter transfac motif files

	wig2bed.py - convert densities to intervals









            

          

      

      

    

  

    
      
          
            
  
bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes


	Tags

	Genomics NGS Genesets Intervals GTF BAM Summary






Purpose

This script takes a gtf formatted file, a short reads
bam formatted file and computes meta-gene profiles over
various annotations derived from the gtf file.

A meta-gene profile is an abstract genomic entity over which reads
stored in a bam formatted file have been counted. A meta-gene
might be an idealized eukaryotic gene (upstream, exonic sequence,
downstream) or any other genomic landmark of interest such as
transcription start sites.

The script can be used to visualize binding profiles of a chromatin
mark in gene bodies, binding of transcription factors in promotors or
sequencing bias (e.g. 3’ bias) in RNA-Seq data.

This script is designed with a slight emphasis on RNA-Seq
datasets. For example, it takes care of spliced reads, by using the
CIGAR string in the BAM file to accurately define aligned bases (if
the –base-accurate is specified, currently this feature is turned off
by default for speed reasons).

Alternatively, for the purpose of visualizing binding profiles of
transcription factor ChIP-Seq without the need to use any genomic
annotations (ENSEMBL, or refseq), you may also consider using
bam2peakshape.py - compute peak shape features from a bam-file, which is designed with a slight emphasis on
Chip-Seq datasets. For example, bam2peakshape.py - compute peak shape features from a bam-file is able to center
the counting window to the summit of every individual peak.
bam2peakshape.py - compute peak shape features from a bam-file is also able to: (1) plot the control ChIP-Seq
library to enable side-by-side comparison; (2) randomize the given
regions to provide a semi-control.



Usage


Quick start examples

The following command will generate the gene profile plot similar to
Fig 1(a) in the published cgat paper, but using a test dataset that is
much smaller and simpler than the dataset used for publishing the cgat
paper.

python ./scripts/bam2geneprofile.py
    --bam-file=./tests/bam2geneprofile.py/multipleReadsSplicedOutAllIntronsAndSecondExon.bam
    --gtf-file=./tests/bam2geneprofile.py/onegeneWithoutAnyCDS.gtf.gz
    --method=geneprofile
    --reporter=gene





In the following, a slightly more involved example will use more
features of this script. The following command generate the gene
profile showing base accuracy of upstream (500bp), exons, introns and
downstream(500bp) of a gene model from some user supplied RNA-Seq data
and geneset.

python ./scripts/bam2geneprofile.py
    --bam-file=./rnaseq.bam
    --gtf-file=./geneset.gtf.gz
    --method=geneprofilewithintrons
    --reporter=gene
    --extension-upstream=500
    --resolution-upstream=500
    --extension-downstream=500
    --resolution-downstream=500





The output will contain read coverage over genes. The profile will
contain four separate segments:


	the upstream region of a gene ( set to be 500bp ),
(--extension-upstream=500).


	the transcribed region of a gene. The transcribed region of every gene will
be scaled to 1000 bp (default), shrinking longer transcripts and
expanding shorter transcripts.


	the intronic regions of a gene. These will be scaled to 1000b (default).


	the downstream region of a gene (set to be 500bp),
(--extension-downstream=500).






Detailed explaination

The bam2geneprofile.py script reads in a set of transcripts
from a gtf formatted file. For each transcript, overlapping
reads from the provided bam file are collected. The counts
within the transcript are then mapped onto the meta-gene structure and
counts are aggregated over all transcripts in the gtf file.

Bam files need to be sorted by coordinate and indexed.

A meta-gene structure has two components - regions of variable size,
such as exons, introns, etc, which nevertheless have a fixed start and
end coordinate in a transcript. The other component are regions of
fixed width, such a regions of a certain size upstream or downstream
of a landmark such as a transcription start site.

The size of the former class, regions of variable size, can be varied
with --resolution options. For example, the option
--resolution-upstream-utr=1000 will create a meta-gene with a
1000bp upstream UTR region. UTRs that are larger will be compressed,
and UTRs that are smaller, will be stretched to fit the 1000bp
meta-gene UTR region.

The size of fixed-width regions can be set with --extension
options. For example, the options --extension-upstream will set
the size of the uptsream extension region to 1000bp. Note that no
scaling is required when counting reads towards the fixed-width
meta-gene profile.

Type:

python bam2geneprofile.py --help





for command line help.




Options

The script provides a variety of different meta-gene structures i.e.
geneprofiles, selectable via using the option: (--method).


Profiles

Different profiles are accessible through the --method option. Multiple
methods can be applied at the same time. While upstream and downstream
typically have a fixed size, the other regions such as CDS, UTR will be
scaled to a common size.


	utrprofile
	UPSTREAM - UTR5 - CDS - UTR3 - DOWNSTREAM
gene models with UTR. Separate the coding section from the non-coding part.



	geneprofile
	UPSTREAM - EXON - DOWNSTREAM
simple exonic gene models



	geneprofilewithintrons
	UPSTREAM - EXON - INTRON - DOWNSTREAM

gene models containing also intronic sequence, only correct if
used with --use-base-accuracy option.



	separateexonprofile
	UPSTREAM - FIRST EXON - EXON - LAST EXON - DOWNSTREAM

gene models with the first and last exons separated out from all
other exons.  Only applicable to gene models with > 1 exons.



	separateexonprofilewithintrons
	UPSTREAM - FIRST EXON - EXON - INTRON - LAST EXON - DOWNSTREAM

gene models with first and last exons separated out, and includes
all introns together.  Excludes genes with < 2 exons and no introns.





geneprofileabsolutedistancefromthreeprimeend


UPSTREAM - EXON (absolute distance, see below) - INTRON (absolute
distance, see below) - DOWNSTREAM (the downstream of the exons)
region, the script counts over the mRNA transcript only, skipping
introns. Designed to visualize the 3 prime bias in RNASeq data,
only correct if used together with --use-base-accuracy option.

absolute distance: In order to to visualize the 3 prime bias,
genes are not supposed to be streched to equal length as it did in
all other counting methods. In this counting method, we first set
a fix length using
--extension-exons-absolute-distance-topolya, the script will
discard genes shorter than this fixed length. For genes (when all
the exons stitched together) longer than this fixed length, the
script will only count over this fixed length ( a absolute
distance ) from three prime end, instead of compress the longer
genes. Same goes for absolute distance intron counting.





	tssprofile
	UPSTREAM - DOWNSTREAM
transcription start/stop sites



	intervalprofile
	UPSTREAM - INTERVAL - DOWNSTREAM
Similar to geneprofile, but count over the complete span of the gene
(including introns).



	midpointprofile
	UPSTREAM  - DOWNSTREAM
aggregate over midpoint of gene model







Normalization

Normalization can be applied in two stages of the computation.


Count vector normalization

Before adding counts to the meta-gene profile, the profile for the
individual transcript can be normalized. Without normalization, highly
expressed genes will contribute more to the meta-gene profile than
lowly expressed genes.  Normalization can assure that each gene
contributes an equal amount.

Normalization is applied to the vector of read counts that is computed
for each transcript. Normalization can be applied for the whole
transcript (total) or on a per segment basis depending on the
counter. For example, in the gene counter, exons, upstream and
downstream segments can be normalized independently.

Counts can be normalized either by the maximum or the sum of all
counts in a segment or across the whole transcript. Normalization is
controlled with the command line option --normalize-trancript. Its
arguments are:


	none: no normalization


	sum: sum of counts within a region (exons, upstream, …).
The area under the curve will sum to 1 for each region.


	max: maximum count within a region (exons,upstream, …).


	total-sum: sum of counts across all regions. The area
under the curve will sum to 1 for
the complete transcript.


	total-max: maximum count across all regions.




The options above control the contribution of individual transcripts
to a meta-gene profile and are thus suited for example for RNA-Seq data.

The options above do not control for different read-depths or any
local biases. To compare meta-gene profiles between samples,
additional normalization is required.



Meta-gene profile normalization

To enable comparison between experiments, the meta-gene profile itself
can be normalized.  Normalization a profile can help comparing the
shapes of profiles between different experiments independent of the
number of reads or transcripts used in the construction of the
meta-gene profile.

Meta-gene profile normalization is controlled via the
--normalize-profile option. Possible normalization are:


	none: no normalization


	area: normalize such that the area under the meta-gene profile is 1.


	counts: normalize by number of features (genes,tss) that have been counted.


	background: normalize with background (see below).




A special normalization is activated with the background option.
Here, the counts at the left and right most regions are used to
estimate a background level for each transcript. The counts are then
divided by this background-level. The assumption is that the meta-gene
model is computed over a large enough area to include genomic
background.




Genes versus transcripts

The default is to collect reads on a per-transcript
level. Alternatively, the script can merge all transcripts of a gene
into a single virtual transcript. Note that this virtual transcript
might not be a biologically plausible transcript. It is usually better
to provide bam2geneprofile.py with a set of representative
transcripts per gene in order to avoid up-weighting genes with
multiple transcripts.



Control

If control files (chip-seq input tracks) are supplied, counts in the
control file can be used to compute a fold-change.



Bed and wiggle files

The densities can be computed from bed or wiggle
formatted files. If a bed formatted file is supplied, it must
be compressed with and indexed with tabix.


Note

Paired-endedness is ignored. Both ends of a paired-ended read are
treated individually.






Command line options



usage: bam2geneprofile [-h] [--version]
                       [-m {geneprofile,tssprofile,utrprofile,intervalprofile,midpointprofile,geneprofilewithintrons,geneprofileabsolutedistancefromthreeprimeend,separateexonprofile,separateexonprofilewithintrons}]
                       [-b BAM] [-c BAM] [-g GTF]
                       [--normalize-transcript {none,max,sum,total-max,total-sum}]
                       [--normalize-profile {all,none,area,counts,background}]
                       [-r {gene,transcript}] [-i SHIFTS] [-a] [-u]
                       [-e EXTENDS]
                       [--resolution-upstream RESOLUTION_UPSTREAM]
                       [--resolution-downstream RESOLUTION_DOWNSTREAM]
                       [--resolution-upstream-utr RESOLUTION_UPSTREAM_UTR]
                       [--resolution-downstream-utr RESOLUTION_DOWNSTREAM_UTR]
                       [--resolution-cds RESOLUTION_CDS]
                       [--resolution-first-exon RESOLUTION_FIRST]
                       [--resolution-last-exon RESOLUTION_LAST]
                       [--resolution-introns RESOLUTION_INTRONS]
                       [--resolution-exons-absolute-distance-topolya RESOLUTION_EXONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--resolution-introns-absolute-distance-topolya RESOLUTION_INTRONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-exons-absolute-distance-topolya EXTENSION_EXONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-introns-absolute-distance-topolya EXTENSION_INTRONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-upstream EXTENSION_UPSTREAM]
                       [--extension-downstream EXTENSION_DOWNSTREAM]
                       [--extension-inward EXTENSION_INWARD]
                       [--extension-outward EXTENSION_OUTWARD]
                       [--scale-flank-length SCALE_FLANKS]
                       [--control-factor CONTROL_FACTOR]
                       [--output-all-profiles]
                       [--counts-tsv-file INPUT_FILENAME_COUNTS]
                       [--background-region-bins BACKGROUND_REGION_BINS]
                       [--output-res RESOLUTION_IMAGES]
                       [--image-format IMAGE_FORMAT] [--timeit TIMEIT_FILE]
                       [--timeit-name TIMEIT_NAME] [--timeit-header]
                       [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?]
                       [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                       [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2geneprofile: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bed2bed - manipulate bed files


Purpose

This script provides various methods for merging (by position, by name
or by score), filtering and moving bed formatted intervals and
outputting the results as a bed file


	
This script provides several methods, each with a set of options

	




	
to control behavoir:

	




	
cgat.tools.bed2bed.merge()

	




	
+++++

	




	
Merge together overlapping or adjacent intervals. The basic

	




	
functionality is similar to bedtools merge, but with some additions:

	




	
\* Merging by name: specifying the --merge-by-name option will mean

	that only overlaping (or adjacent intervals) with the same value in
the 4th column of the bed will be merged






	
\* Removing overlapping intervals with inconsistent names: set the

	--remove-inconsistent-names option.






	
.. caution::

	Intervals of the same name will only be merged if they
are consecutive in the bed file.






	
\* Only output merged intervals: By specifiying the --merge-min-intervals=n

	options, only those intervals that were created by merging at least n
intervals together will be output






	
Intervals that are close but not overlapping can be merged by setting

	




	
--merge-distance to a non-zero value

	




	
cgat.tools.bed2bed.bins()

	




	
++++

	




	
Merges together overlapping or adjecent intervals only if they have

	




	
"similar" scores. Score similarity is assessed by creating a number of

	




	
score bins and assigning each interval to a bin. If two adjacent

	




	
intervals are in the same bin, the intervals are merged. Note that in

	




	
contrast to merge-by-name above, two intervals do not need to be

	




	
overlapping or within a certain distance to be merged.

	




	
There are several methods to create the bins:

	




	
\* equal-bases: Bins are created to that they contain the same number of bases.

	Specified by passing “equal-bases” to –binning-method. This is the default.






	
\* equal-intervals: Score bins are create so that each bin contains the

	same number of intervals. Specified by passing “equal-intervals” to
–binning-method.






	
\* equal-range: Score bins are created so that

	each bin covers the same fraction of the total range of
scores. Specified by passing “equal-range” to –binning-method.






	
\* bin-edges: Score binds can be specified by manually passing a comma

	seperated list of bin edges to –bin-edges.






	
The number of bins is specified by the --num-bins options, and the

	




	
default is 5.

	




	
cgat.tools.bed2bed.block()

	




	
+++++

	




	
Creates blocked bed12 outputs from a bed6, where intervals with the

	




	
same name are merged together to create a single bed12 entry.

	




	
.. Caution:: Input must be sorted so that entries of the same

	




	
name are together.

	




	
filter-genome

	




	
+++++++++++++

	




	
Removes intervals that are on unknown contigs or extend off the 3' or

	




	
5' end of the contig.  Requires a tab seperated input file to -g which

	




	
lists the contigs in the genome, plus their lengths.

	




	
sanitize-genome

	




	
+++++++++++++++

	




	
As above, but instead of removing intervals overlapping the ends of

	




	
contigs, truncates them.  Also removes empty intervals.

	




	
filter-names

	




	
++++++++++++

	




	
Output intervals whose names are in list of desired names. Names are

	




	
supplied as a file with one name on each line.

	




	
cgat.tools.bed2bed.shift()

	




	
+++++

	




	
Moves intervals by the specified amount, but will not allow them to be

	




	
shifted off the end of contigs. Thus if a shift will shift the start

	




	
of end of the contig, the interval is only moved as much as is

	




	
possible without doing this.

	




	
rename-chr

	




	
++++++++++

	




	
Renames chromosome names. Source and target names are supplied as a file

	




	
with two columns. Examples are available at:

	




	
https://github.com/dpryan79/ChromosomeMappings

	




	
Note that unmapped chromosomes are dropped from the output file.

	




	
Other options

	




	
+++++++++++++

	




	
-g/--genome-file, -b/--bam-file:

	the filter-genome, sanitize-genome and shift methods require a genome in
order to ensure they are not placing intervals outside the limits of
contigs. This genome can be supplied either as a samtools or cgat indexed
genome, or extracted from the header of a bam file.





Examples

Merge overlapping or adjectent peaks from a CHiP-seq experiment where the
intervals have the same name:


cat chip-peaks.bed | cgat bed2bed –method=merge –merge-by-name > chip-peaks-merged.bed




Merge adjected ChIP-seq peaks if their scores are in the same quartile of
all scores:


cat chip-peaks.bed | cgat bed2bed –method=bins –binning-method=equal-intervals –num-bins=4




Remove intervals that overlap the ends of a contig and those that are on a
non-standard contig. Take the input intervals from a file rather than stdin.
Note that hg19.fasta has been indexed with index_genome:


cgat bed2bed –method=filter-genome –genome-file=hg19.fasta -I chip-peaks.bed -O chip-peaks-sanitized.bed




Convert a bed file contain gene structures with one line per exon to a bed12
with linked block representing the gene structure. Note the transparent use
of compressed input and output files:


cgat bed2bed –method=block -I transcripts.bed.gz -O transcripts.blocked.bed.gz




Rename UCSC chromosomes to ENSEMBL.


cat ucsc.bed | cgat bed2bed –method=rename-chr –rename-chr-file=ucsc2ensembl.txt > ensembl.bed






Usage


cgat bed2bed –method=[METHOD] [OPTIONS]




Will read bed file from stdin and apply the specified method



Command line options



usage: bed2bed [-h]
               [-m {merge,filter-genome,bins,block,sanitize-genome,shift,extend,filter-names,rename-chr}]
               [--num-bins NUM_BINS] [--bin-edges BIN_EDGES]
               [--binning-method {equal-bases,equal-intervals,equal-range}]
               [--merge-distance MERGE_DISTANCE]
               [--merge-min-intervals MERGE_MIN_INTERVALS] [--merge-by-name]
               [--merge-and-resolve-blocks] [--merge-stranded]
               [--remove-inconsistent-names] [--offset OFFSET]
               [-g GENOME_FILE] [-b BAM_FILE] [--filter-names-file NAMES]
               [--rename-chr-file RENAME_CHR_FILE] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bed2bed: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bed2gff.py - convert bed to gff/gtf


	Tags

	Genomics Intervals BED GFF Conversion






Purpose

This script converts a bed-formatted file to a gff or
gtf-formatted file.

It aims to populate the appropriate fields in the gff file
with columns in the bed file.

If --as-gtf is set and a name column in the bed file is
present, its contents will be set as gene_id and
transcript_id. Otherwise, a numeric gene_id or
transcript_id will be set according to --id-format.



Usage

Example:

# Preview input bed file
zcat tests/bed2gff.py/bed3/bed.gz | head
# Convert BED to GFF format
cgat bed2gff.py < tests/bed2gff.py/bed3/bed.gz > test1.gff
# View converted file (excluding logging information)
cat test1.gtf | grep -v "#" | head


















	chr1

	bed

	exon

	501

	1000

	.

	.

	.

	gene_id “None”; transcript_id “None”;



	chr1

	bed

	exon

	15001

	16000

	.

	.

	.

	gene_id “None”; transcript_id “None”;






Example:

# Convert BED to GTF format
cgat bed2gff.py --as-gtf < tests/bed2gff.py/bed3/bed.gz > test2.gtf
# View converted file (excluding logging information)
cat test2.gtf | grep -v "#" | head


















	chr1

	bed

	exon

	501

	1000

	.

	.

	.

	gene_id “00000001”; transcript_id “00000001”;



	chr1

	bed

	exon

	15001

	16000

	.

	.

	.

	gene_id “00000002”; transcript_id “00000002”;






Type:

cgat bed2gff.py --help





for command line help.



Command line options



usage: bed2gff [-h] [-a] [-f ID_FORMAT] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bed2gff: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2bed.py - convert from gff/gtf to bed


	Tags

	Genomics Intervals GFF BED Conversion






Purpose

This script converts GFF or GTF formatted files to BED formatted
files.



Documentation

Users can select the field from the GTF file to be used in the name
field of the BED file using --set-name. Choices include “gene_id”,
“transcript_id”, “class”, “family”, “feature”, “source”, “repName”
and “gene_biotype”.
To specify the input is in GTF format use –is-gtf.

BED files can contain multiple tracks. If required, users can use the
“feature” or “source” fields in the input GFF file to specifiy
different tracks in the BED file (default none).



Usage

Example:

# View input GTF file
head tests/gff2bed.py/mm9_ens67_geneset_100.gtf

# Convert GTF to bed format using gene_id as name and group by GTF feature
cat tests/gff2bed.py/mm9_ens67_geneset_100.gtf | cgat gff2bed.py --is-gtf --set-name=gene_id --track=feature > mm9_ens67_geneset_100_feature.bed















	track name=CDS



	chr18

	3122494

	3123412

	ENSMUSG00000091539

	0

	
	






	chr18

	3327491

	3327535

	ENSMUSG00000063889

	0

	
	






	chr18

	3325358

	3325476

	ENSMUSG00000063889

	0

	
	











Command line options



usage: gff2bed [-h] [--is-gtf]
               [--set-name {gene_id,transcript_id,class,family,feature,source,repName,gene_biotype}]
               [--track {feature,source,None}] [--bed12-from-transcripts]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2bed: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
diff_gtf.py - compute overlap between multiple gtf files


	Tags

	Genomics Intervals Genesets GTF Comparison






Purpose

This script compares multiple set of gtf files. It computes
the overlap between bases, exons and genes between each pair
of gtf files.

If results from a previous run are present, existing
pairs are not re-computed but simply echoed.

The output is a tab-separated table with counts for each pair
of files being compared. The fields are:







	Column

	Content



	set

	Name of the set



	ngenes_total

	number of genes in set



	ngenes_ovl

	number of genes overlapping



	ngenes_unique

	number of unique genes



	nexons_total

	number of exons in set



	nexons_ovl

	number of exons overlapping



	nexons_unique

	number of unique exons



	nbases_total

	number of bases in gene set



	nbases_ovl

	number of bases overlapping



	nbases_unique

	number of unique bases






Each of these fields will appear twice, once for each of the pair of files.
Hence ngenes_unique1 will be the number of genes in set1 that have no exons
that overlap with any exons in set2, and vice versa for ngenes_unique2. And
on for each field in the table above. This makes a total of 9*2=18 fields
containing counts, each starting with an n.

A further set of 18 fields each start with a p and are the corresponding
percentage values.



Options


	-s, --ignore-strand

	Ignore strand infomation so that bases overlap even if exons/genes are
on different strands



	-u, --update=FILENAME

	Read in previous results from FILENAME and only output comparisons that
are missing.



	-p, --pattern-identifier=PATTERN

	Provide a regular expression pattern for converting a filename into a
set name for the output. The regular expression should capture at least
one group. That group will be used to identify that file in the output
table (see examples)





Examples

For example if we have two gtf_files that look like:

first_set_of_genes.gtf:
1    protein_coding  exon    1       10      .       +       .       gene_id "1"; transcript_id "1"
1    protein_coding  exon    20      30      .       +       .       gene_id "1"; transcript_id "1"

second_set_of_genes.gtf:
1    protein_coding  exon    25      35      .       +       .       gene_id "1"; transcript_id "1"
2    protein_coding  exon    100     200     .       +       .       gene_id "2"; transcript_id "3"





Then the command:

python diff_gtf.py *.gtf --pattern-identifier='(.+)_of_genes.gtf' > out.tsv





would produce an output file that has a single row with set1 being “second_set”
and set2 being “first_set” (these are extracted using that –pattern-identifier
option). It will report that set1 contains 2 genes and set2 1 gene. That for
each set one of these genes overlaps with the other set. For set1 it will
report that 1 gene is unique and that no genes are unique for set2 and so on
for exons and bases.

If we want to add a third file to the comparison,
“third_set_of_genes.gtf”, we don’t need to redo the comparison between
first_set_of_genes.gtf and second_set_of_genes.gtf:

python diff_gtf.py --update=out.tsv *.gtf.gz > new.tsv





This will output a table with a row for third_set vs second_set and
third_set vs second_set, along with the comparison of first_set and
second_set that will simply be copied from the previous results. It is
important to include all files on the command line that are to be
output. Any comparisons in out.tsv that correspond to files that
are not given on the command line will not be output.



Usage


	::
	cgat diff_gtf.py GTF GTF [GTF [GTF […]]] [OPTIONS]
cgat diff_gtf GTF1 –update=OUTFILE [OPTIONS]





where GTF is a gtf or compressed gtf formated file and OUTFILE is the results
from a previous run.  At least two must be provided unless –update is present.

Type:

python diff_gtf.py --help





for command line help.



Command line options



usage: diff-gtf [-h] [--version] [-s] [-u FILENAME_UPDATE] [-p PATTERN_ID]
                [-g] [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
diff-gtf: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2psl.py - convert from gff to psl


	Tags

	Genomics Intervals GFF PSL Conversion






Purpose

This scripts converts from a gff formatted
file to a psl formatted file.
The output can be modified by the following command line options:


	--allow-duplicates

	keep duplicate entries from gff/gtf input file



	--genome-file

	restrict output to gff/gtf entries with contigs in fasta file



	--queries-tsv-file

	restrict output to queries in fasta file







Usage

Example:

python gff2psl.py < in.gff > out.psl





Type:

python gff2psl.py --help





for command line help.
genome-file



Command line options



usage: gff2psl [-h] [--is-gtf] [--no-header] [-g GENOME_FILE]
               [--queries-tsv-file INPUT_FILENAME_QUERIES]
               [--allow-duplicates] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2psl: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2coverage.py - compute genomic coverage of gff intervals


	Tags

	Genomics Intervals Summary GFF






Purpose

This script computes the genomic coverage of intervals in
a gff formatted file. The coverage is computed per feature.



Usage

You can use two methods to compute the coverage: genomic and histogram.

Let us explain their usage with this small.gtf file:

19 processed_transcript exon 16 16 . - . gene_id
19 processed_transcript exon 27 27 . - . gene_id
19 processed_transcript exon 8  8  . - . gene_id
19 processed_transcript exon 19 19 . - . gene_id
19 processed_transcript exon 5  5  . - . gene_id





and this toy example (small.fasta) of an indexed fasta file:

>chr19
GCCGGCCTCTACCTGCAGCAGATGCCCTAT





Both files (small.gtf and small.fasta) are included
in the GitHub [https://github.com/cgatOxford/cgat] repository.


genomic method

The genomic method computes the coverage of intervals
accross the genome file given as input. Let us see how to
apply the genomic method to the small examples above:

python gff2coverage.py --method=genomic --genome-file=small < small.gtf





The output (wrapped to fit here) will be:

contig  source  feature  intervals  bases  p_coverage  total_p_coverage
19      trans.  exon     5          5      16.666667   16.666667





As you can see the information displayed is the following: contig name,
source, feature name, number of intervals within the contig, number of
bases, percentage of coverage in the contig, and percentage of coverage
in the genome file.



histogram method

On the contrary, if you want to compute the coverage of intervals
within the gff file itself summarized as an histogram and
grouped by contig name, please use the histogram method.

To use the histogram method with the input files above, please type:

python gff2coverage.py --method=histogram --window=5 --features=exon --output-filename-pattern=%s.hist < small.gtf





In this case the output (written to file 19.hist) is:

abs_pos  rel_pos  abs_exon  rel_exon
0        0.0000   1         0.2000
5        0.1852   2         0.4000
10       0.3704   2         0.4000
15       0.5556   4         0.8000
20       0.7407   4         0.8000
25       0.9259   5         1.0000





The output is given as a pair of columns. The first pair of columns always
appears and lists the cumulative numbers of nucleotides in each window or
bin –absolute and relative values in the former and latter columns,
respectively. The subsequent pair of columns depends on the values given to
the --features option. In this example there is an extra column for the
exon feature but you could especify as many of them as you wanted among
those features listed in your gff file.

On the other hand, the --num-bins option can be used instead of
--window along with --genome-file to define the number of bins for the
resultant histogram. This parameter is used by default (with value: 1000)
when using the histogram method.

Please note the following:


	you need to specify the feature name explicitly (with the --feature option) to compute the genomic coverage of that feature. You can also usea comma-separated list of feature names.


	the output of the histogram method goes to a file (in the current workingdirectory) which is named as the contig name by default. To change thisbehaviour, please use the --output-filename-pattern option where %s will be substituted by the contig name.







Command line options



usage: gff2coverage [-h] [--version] [-g GENOME_FILE] [-f FEATURES]
                    [-w WINDOW_SIZE] [-b NUM_BINS] [-m {genomic,histogram}]
                    [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                    [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gff2coverage: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2fasta.py - output sequences from genomic features


	Tags

	Genomics Intervals Sequences GFF Fasta Transformation






Purpose

This script outputs the genomic sequences for intervals within
a gff or :term: gtf formatted file.

The ouput can be optionally masked and filtered.



Usage

If you want to convert a features.gff file with intervals information
into a fasta file containing the sequence of each interval, use this
script as follows:

python gff2fasta.py --genome-file=hg19 < features.gff > features.fasta





The input can also be a gtf formatted file. In that case, use the
--is-gtf option:

python gff2fasta.py --genome-file=hg19 --is-gtf < features.gtf > features.fasta





If you want to add a polyA tail onto each transcript you can use the extend
options:


python gff2fasta.py –genome-file=hg19 –is-gtf
–extend-at=3 –extend-by=125 –extend-with=A
< features.gtf > features.fasta




If you want to merge the sequence of similar features together, please use
--merge-overlapping:

python gff2fasta.py --genome-file=hg19 --merge-overlapping < features.gff > features.fasta





It is possible to filter the output by selecting a minimum or maximum number
of nucleotides in the resultant fasta sequence with --max-length or
--min-interval-length respectively:

python gff2fasta.py --genome-file=hg19 --max-length=100 < features.gff > features.fasta





Or you can also filter the output by features name with the --feature
option:

python gff2fasta.py --genome-file=hg19 --feature=exon < features.gff > features.fasta





On the other hand, low-complexity regions can be masked with the --masker
option and a given gff formatted file:

python gff2fasta.py --genome-file=hg19 --masker=dust --maskregions-bed-file=intervals.gff < features.gff > features.fasta





where --masker can take the following values: dust, dustmasker,
and softmask.



Options


	--is-gtf
	Tells the script to expect a gtf format file



	--genome-file
	PATH to Fasta file of genome build to use



	--merge-overlapping
	Merge features in gtf/gff file that are adjacent and share
attributes



	--method=filter --filter-method
	Filter on a gff feature such as exon or CDS



	--maskregions-bed-file
	Mask sequences in intervals in gff file



	--remove-masked-regions
	Remove sequences in intervals in gff file rather than masking them



	--min-interval-length
	Minimum output sequence length



	--max-length
	Maximum output sequence length



	--extend-at
	Extend sequence at 3’, 5’ or both end.  Optionally ‘3only’ or ‘5only’ will
return only the 3’ or 5’ extended sequence



	--extend-by
	Used in conjunction with --extend-at, the number of nucleotides to extend
by



	--extend-with
	Optional. Used in conjunction with --extend-at and --extend-by.
Instead of extending by the genomic sequence, extend by this string repeated
n times, where n is –entend-by



	--masker
	Masker type to use: dust, dustmasker, soft or none



	--fold-at
	Fold the fasta sequence every n bases



	--naming-attribute
	Use this attribute to name the fasta entries







Command line options



usage: gff2fasta [-h] [--is-gtf] [-g GENOME_FILE] [-m] [-e FEATURE] [-f gff]
                 [--remove-masked-regions] [--min-interval-length MIN_LENGTH]
                 [--max-length MAX_LENGTH]
                 [--extend-at {none,3,5,both,3only,5only}]
                 [--header-attributes] [--extend-by EXTEND_BY]
                 [--extend-with EXTEND_WITH]
                 [--masker {dust,dustmasker,softmask,none}]
                 [--fold-at FOLD_AT] [--fasta-name-attribute NAMING_ATTRIBUTE]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
gff2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2gff.py - manipulate gff files


	Tags

	Genomics Intervals GFF Manipulation






Purpose

This scripts reads a gff formatted file, applies a
transformation and outputs the new intervals in gff format.
The type of transformation chosen is given through the –method`
option. Below is a list of available transformations:

complement-groups


output the complenent intervals for the features in the file, for
example to output introns from exons. The option --group-field
sets field/attribute to group by, e.g gene_id, transcript_id, feature,
source.




combine-groups


combine all features in a group into a single interval.  The
option --group-field sets field/attribute to group by, see
alse complement-groups.




to-forward-coordinates


translate all features forward coordinates.




to-forward-strand


convert to forward strand




add-upstream-flank/add-downstream-flank/add-flank


add an upstream/downstream flanking segment to first/last exon of a group.
The amount added is given through the options --extension-upstream and
--extension-downstream. If --flank-method is extend, the
first/last exon will be extended, otherwise a new feature will be added.




crop


crop features according to features in a separate gff file.
If a feature falls in the middle of another, two entries will be
output.””” )




crop-unique


remove non-unique features from gff file.




merge-features


merge consecutive features.




join-features


group consecutive features.





	filter-range
	extract features overlapping a chromosomal range. The range can be
set by the --filter-range option.



	sanitize
	reconcile chromosome names between ENSEMBL/UCSC or with an indexed
genomic fasta file (see index_fasta.py - Index fasta formatted files). Raises an exception if
an unknown contig is found (unless --skip-missing is set). The
method to sanitize is specified by --sanitize-method.The
method to sanitize is specified by --sanitize-method. Options for
`--sanitize-method` include “ucsc”, “ensembl”, “genome”.
A pattern of contigs to remove can be given in the option
--contig-pattern.
If --sanitize-method is set to ucsc or ensembl, the option
--assembly-report is required to allow for accurate mapping
between UCSC and Ensembl. If not found in the assembly report the
contig names are forced into the desired convention, either by removing
or prepending chr, this is useful for gff files with custom
contigs. The Assembly Report can be found on the NCBI assembly page
under the link “Download the full sequence report”.
If --sanitize-method is set to genome, the genome file has to be
provided via the option --genome-file or --contigs-tsv-file





skip-missing


skip entries on missing contigs. This prevents exception from being raised




filename-agp


agp file to map coordinates from contigs to scaffolds




rename-chr


Renames chromosome names. Source and target names are supplied as a file
with two columns. Examples are available at:
https://github.com/dpryan79/ChromosomeMappings
Note that unmapped chromosomes are dropped from the output file.






Usage

For many downstream applications it is helpful to make sure
that a gff formatted file contains only features on
placed chromosomes.

As an example, to sanitise hg38 chromosome names and remove
chromosome matching the regular expression patterns
“ChrUn”, “_alt” or “_random”, use the following:


cat in.gff
| gff2gff.py –method=sanitize –sanitize-method=ucsc


–assembly-report=/path/to/file –skip-missing





gff2gff.py –remove-contigs=”chrUn,_random,_alt” > gff.out






The “–skip-missing” option prevents an exception being
raised if entries are found on missing chromosomes

Another example, to rename UCSC chromosomes to ENSEMBL.


cat ucsc.gff
| gff2gff.py –method=rename-chr


–rename-chr-file=ucsc2ensembl.txt > ensembl.gff







Type:

cgat gff2gff --help





for command line help.



Command line options



usage: gff2gff [-h] [--version]
               [-m {add-flank,add-upstream-flank,add-downstream-flank,crop,crop-unique,complement-groups,combine-groups,filter-range,join-features,merge-features,sanitize,to-forward-coordinates,to-forward-strand,rename-chr}]
               [--ignore-strand] [--is-gtf] [-c INPUT_FILENAME_CONTIGS]
               [--agp-file INPUT_FILENAME_AGP] [-g GENOME_FILE]
               [--crop-gff-file FILENAME_CROP_GFF] [--group-field GROUP_FIELD]
               [--filter-range FILTER_RANGE]
               [--sanitize-method {ucsc,ensembl,genome}]
               [--flank-method {add,extend}] [--skip-missing]
               [--contig-pattern CONTIG_PATTERN]
               [--assembly-report ASSEMBLY_REPORT]
               [--assembly-report-hasids ASSEMBLY_REPORT_HASIDS]
               [--assembly-report-ucsccol ASSEMBLY_REPORT_UCSCCOL]
               [--assembly-report-ensemblcol ASSEMBLY_REPORT_ENSEMBLCOL]
               [--assembly-extras ASSEMBLY_EXTRAS]
               [--extension-upstream EXTENSION_UPSTREAM]
               [--extension-downstream EXTENSION_DOWNSTREAM]
               [--min-distance MIN_DISTANCE] [--max-distance MAX_DISTANCE]
               [--min-features MIN_FEATURES] [--max-features MAX_FEATURES]
               [--rename-chr-file RENAME_CHR_FILE] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2gff: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2histogram.py - compute histograms from intervals in gff or bed format


	Tags

	Genomics Intervals GFF Summary






Purpose

This script computes distributions of interval sizes, intersegmental
distances and interval overlap from a list of intervals in gff
or bed format.

The output will be written into separate files. Filenames are given by
--ouput-filename-pattern.

Available methods are:


	hist
	Output a histogram of interval sizes and distances between intervals
in nucleotides.



	stats
	Output summary statistics of interval sizes and distances between
intervals



	values
	Output distances, sizes, and overlap values to separate files.



	all
	all of the above.







Usage

For example, a small gff file such as this (note that intervals need
to be sorted by position):

chr19   processed_transcript    exon    60105   60162   .       -       .
chr19   processed_transcript    exon    60521   60747   .       -       .
chr19   processed_transcript    exon    65822   66133   .       -       .
chr19   processed_transcript    exon    66346   66416   .       -       .
chr19   processed_transcript    exon    66346   66509   .       -       .





will give when called as:

cgat gff2histogram < in.gff





the following output files:


	hist
	Histogram of feature sizes and distances between adjacent features








	residues

	size

	distance



	58.0

	1

	na



	71.0

	1

	na



	164.0

	1

	na



	212.0

	na

	1



	227.0

	1

	na



	312.0

	1

	na



	358.0

	na

	1



	5074.0

	na

	1










stats


Summary statistics of the distribution of feature size and distance between
adjacent features.















	data

	nval

	min

	max

	mean

	median

	stddev

	sum

	q1

	q3



	size

	5

	58.0000

	312.0000

	166.4000

	164.0000

	95.6339

	832.0000

	71.0000

	227.0000



	distance

	3

	212.0000

	5074.0000

	1881.3333

	358.0000

	2258.3430

	5644.0000

	212.0000

	5074.0000









overlaps


A file with features that overlap other features, here:

chr19   processed_transcript    exon    66346   66416   .       -       .       chr19   processed_transcript    exon    66346   66509   .       -       .








Type:

python gff2histogram.py --help





for command line help.



Command line options



usage: gff2histogram [-h] [--version] [-b BIN_SIZE] [--min-value MIN_VALUE]
                     [--max-value MAX_VALUE] [--no-empty-bins]
                     [--with-empty-bins] [--ignore-out-of-range]
                     [--missing-value MISSING_VALUE] [--use-dynamic-bins]
                     [--format {gff,gtf,bed}]
                     [--method {all,hist,stats,overlaps,values}]
                     [--output-section {all,size,distance}]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
gff2histogram: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2stats.py - count features, etc. in gff file


	Tags

	Genomics Intervals GFF GTF Summary






Purpose

This script generates summary statistics over features,
source, gene_id and transcript_id in one or more gff
or gtf formatted files.



Usage

Input is either a gff or gtf file; gtf input must be specified
with the –is-gtf option.

Example:

python gff2stats.py --is-gtf example.gtf > example_sum.tsv

cat example.gtf

19  processed_transcript  exon  6634666509  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6052160747  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6010560162  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6634666416  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000589741" ...

cat example_sum.tsv

track  contigs  strands  features  sources  genes  transcripts ...
stdin  1        2        4         23       2924   12752       ...





The counter used is dependent on the file type.  For a gff file, the implemented counters are:


	number of intervals per contig, strand, feature and source




For a gtf file, the additional implemented counters are:


	number of genes, transcripts, single exon transcripts


	summary statistics for exon numbers, exon sizes, intron sizes and
transcript sizes




The output is a tab-separated table.



Options

The default action of gff2stats is to count over contigs, strand,
feature and source.  This assumes the input file is a gff file

There is a single option for this script:

``--is-gtf``






The input file is gtf format.  The output will therefore
contain summaries over exon numbers, exon sizes, intron sizes and
transcript sizes in addition to the the number of genes,
transcripts and single exon transcripts.




Type:

python gff2stats.py --help





for command line help.



Command line options



usage: gff2stats [-h] [--version] [--is-gtf] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gff2stats: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gtf2gff.py - convert a transcript set to genomic features


	Tags

	Genomics Genesets Intervals Transformation GTF GFF






Purpose

This scripts converts a transcript set in a gtf formatted file
into a set of features in a gff formatted file.

In other words, a gene set (gtf), which constitutes a hierarchical set
of annotations, will be converted into a non-hierarchical list of
genomic segments.

Various methods can be used to do the conversion (see command line
argument --method):


	exons
	annotate exons. Exonic segments are classified according to the
transcript structure.



	genome/full
	annotate genome with gene set. Genomic segments are labeled
intronic, intergenic, etc. This annotation aggregates the
information of multiple genes such that each annotation is either
valid or ambiguous.



	genes
	annotate genome using the information on a gene-by-gene basis.
Multiple overlapping annotations will be created for each transcript.
Redundant annotations will be merged.



	great-domains
	regulatory domains using the basal+extended model according to GREAT.



	promotors
	declare promoter regions. These segments might be overlapping. A promotor
is the region x kb upstream of a transcription start site. The option
--promotor-size sets the region width.



	regulons
	declare regulatory regions. Regulatory regions contain the region x
kb of upstream and downstream of a transciption start site. The
options --upstream-extension and -downstream set the region width.



	tts-regulons
	declare tts regulatory regions. tts-regulatory regions contain the
region x kb of upstream and downstream of a transciption
termination site. The options --upstream-extension and -downstream
set the region width.



	territories
	build gene territories around full length genes.



	tss-territories
	build gene territories around transcription start sites.





In a simple setting, assume we have the two genes below, the first
with a single transcript on the positive strand, the second on the
negative strand:

       Gene A                    Gene B
        |---|                 |---|  |---|
     >>>>   >>>>           <<<<   <<<<   <<<<

Genome (simplified result without UTRs and flanks)

       exon   exon         exon   exon   exon
..---><--><-><--><---------<--><-><--><-><--><-----...
intergenic intron  intergenic  intron intron intergenic

Territories

     Gene A                    Gene B
<---------------------><------------------------------>

TSS-Territories

     Gene A                    Gene B
<-------->            <----------->

Promotors

<---->              <---->






Genome

If --method=genome, the gene set is used to annotate the complete genome.


Note

The gtf file has to be sorted first by contig and then by position.



A segment in the genome will either be covered by:


	cds
	a coding exon (also: CDS, start_codon).



	utr
	a UTR (also: stop_codon)



	5flank, 3flank, flank
	an upstream/downstream segment of defined size. If the intergenic
region is too small to accomodate a flank, the regions is just
‘flank’.



	intergenic
	intergenic region.



	5telomeric, 3telomeric
	telomeric region (before/after first/last gene).



	intronic
	intronic region. An intron has a minimum size of 30 bases.



	frameshift
	frameshift. Introns of less than 4 residues length



	ambiguous
	in case of overlapping genes, regions are designated ambiguous



	unknown
	unknown are intronic regions that are less than the
minimum size of an intron (default: 30) and larger than the size of
frameshift (default:4).  These could be either genuine small
introns or they could be artefactual arising from collapsing the
exons within a gene model.





All segments are annotated by their closest gene. Intergenic regions are
annotated with their two neighbouring genes. The upstream gene is listed
in the attribute gene_id, the downstream one is listed in the attribute
downstream_gene_id.



Genes

If --method=genes, the gene set is used to annotate the complete genome.


Note

The gtf file has to be sorted by gene.



A segment in the genome will be annotated as:


	cds
	a coding exon



	utr5, utr3
	a 5’ or 3’ utr



	exon
	an exon. Exons are further classified into first, middle and last exons.



	intronic
	an intronic region. Intronic regions are further divided into
first, middle, last.



	upstream, downstream
	upstream/downstream regions in 5 intervals of a total of 1kb (see
option –flank-size to increase the total size).







Territories

If --method=territories, the gene set is used to define gene
territories.  Territories are segments around genes and are
non-overlapping. Exons in a gene are merged and the resulting the
region is enlarged by –radius. Overlapping territories are divided at
the midpoint between the two genes. The maximum extent of a territory
is limited by the option --territory-extension


Note

The gtf file has to be sorted first by contig and then by position.




Note

Genes should already have been merged (gtf2gtf –merge-transcripts)





TSSTerritories

If --method=tss-territories, the gene set is used to define gene
territories.  Instead of the full gene length as in
Territories, only the tss is used to define a
territory. Territories are segments around genes and are
non-overlapping.  Overlapping territories are divided at the midpoint
between the two genes. The maximum extent of a territory is limited by
the option --territory-extension.


Note

The gtf file has to be sorted first by contig and then by position.




Note

Genes should already have been merged (gtf2gtf –merge-transcripts)



The domain definitions corresponds to the nearest gene rule in GREAT.



GREAT-Domains

Define GREAT regulatory domains. Each TSS in a gene is associated with
a basal region. The basal region is then extended upstream to the
basal region of the closest gene, but at most to –radius. In the case
of overlapping genes, the extension is towards the next
non-overlapping gene.

This is the “basal plus extension” rule in GREAT. Commonly used are
5+1 with 1 Mb extension.  To achieve this, use for example:

cgat gtf2gff    --genome-file=hg19    --method=great-domains    --upstream-extension=5000    --downstream-extension=1000    --territory-extension=1000000    < in.gtf > out.gff





If there are a multiple TSS in a transcript, the basal region extends from the
first to the last TSS plus the upstream/downstream flank.



Exons

If --method=exons, exons are annotated by their dispensibility.


Note

The gtf file should be sorted by genes



For each exon, the following additional fields are added to the gtf file:


	ntranscripts
	number of transcripts



	nused
	number of transcripts using this exon



	positions
	positions of exon within transcripts. This is a , separated
list of tuples pos:total. For example, 1:10,5:8 indicates
an exon that appears in first position in a ten exon transcript and
fifth position in an eight exon transcript. The position is
according to the direction of transcription.






Note

overlapping but non-identical exons, for example due to internal
splice sites, are listed as separate exons. Thus the output is not
fully flat as some segments could be overlapping (see output
variable noverlapping in the log file).



The following example uses an ENSEMBL gene set:: (needs genome-file to
run)


gunzip < Mus_musculus.NCBIM37.55.gtf.gz | awk ‘$3 == “CDS”’ | python gtf2gff.py –method=exons –restrict-source=protein_coding






Promoters

If --method=promotors, putative promotor regions are output. A
promoter is a pre-defined segment upstream of the transcription start
site. As the actual start site is usually not known, the start of the
first exon within a transcript is used as a proxy. A gene can have
several promotors associated with it, but overlapping promotor regions
of the same gene will be merged. A promoter can extend into an
adjacent upstream gene.

The --restrict-source option determines which GTF entries are
output. The default is to output all entries but the user can choose
from protein_coding, pseudogene or lncRNA.

The size of the promotor region can be specified by the command line
argument --promotor-size.



Regulons

If --method=regulons, putative regulon regions are output. This is similar
to a promotor, but the region extends both upstream and downstream from
the transcription start site.

The --restrict-source option determines which GTF entries are
output. The default is to output all entries but the user can choose
from protein_coding, pseudogene or lncRNA.

The size of the promotor region can be specified by the command line
argument --upstream-extension and --downstream-extension

If --method=tts-regulons, regulons will be defined around the
transcription termination site.




Usage

Type:

cgat gtf2gff --method=genome --genome-file=hg19 < geneset.gtf > annotations.gff





For command line help:

cgat gtf2gff --help







Command line options



usage: gtf2gff [-h] [--version] [-g GENOME_FILE] [-i]
               [-s {protein_coding,pseudogene,lncRNA}]
               [-m {full,genome,exons,promotors,tts,regulons,tts-regulons,genes,territories,tss-territories,great-domains}]
               [-r RADIUS] [-f FLANK] [--flank-increment-size INCREMENT]
               [-p PROMOTOR] [-u UPSTREAM] [-d DOWNSTREAM]
               [--gene-detail {introns+exons,exons,introns}]
               [--merge-overlapping-promotors]
               [--min-intron-length MIN_INTRON_LENGTH] [--is-unsorted]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2gff: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gtf2gtf.py - manipulate transcript models


	Tags

	Genomics Genesets GTF Manipulation






Purpose

This script reads a gene set in gtf format from stdin, applies some
transformation, and outputs a new gene set in gtf format to stdout.
The transformation is chosen by the --method command line option.

Transformations available for use in this script can broadly be
classified into four categories:


	sorting gene sets


	manipulating gene models


	filtering gene sets


	setting/resetting fields within a gtf file




Further options for working with gtf files are available in gff2gff.py,
which can be run with the specification –is-gtf


Sorting gene sets

sort


Sorts entries in gtf file by one or more fields







	
option





gene





	
order in which fields are sorted





gene_id, contig, start









	gene+transcript

	gene_id, transcript_id, contig, start



	contig+gene

	contig, gene_id, transcript_id, start



	transcript

	transcript_id, contig, start



	position

	contig, start



	position+gene

	contig( gene_id, start )



	gene+position

	gene_id, contig, start



	gene+exon

	gene_id, exon_id






N.B. position+gene sorts by gene_id, start, then subsequently sorts
flattened gene lists by contig, start






Manipulating gene-models

Options that can be used to alter the features represented in a gtf
file. Only one method can be specified at once.

Input gtfs need to be sorted so that features for a gene or transcript
appear consecutively within the file. This can be achevied using
--method=sort.


	genes-to-unique-chunks`
	Divide the complete length of a gene up into chunks that represent
ranges of bases that are all present in the same set of transcripts.
E.g. for two overlapping exons an entry will be output representing
the overlap and a seperate entry each for the sequences only present
in one. Ranges which are between the first TSS and last TTS but not
present in any transcript (i.e. merged introns) are also output.
Useful for DEXSeq like splicing analysis



	find-retained-introns
	Finds intervals within a transcript that represent retained-introns,
here a retained intron is considered to be an intron in one transcript
that is entirely contianed within the exon of another. The retained
intron will be assigned to the transcript with the containing exon. Where
multiple, overlapping introns are contained within a single exon of a
transcript, the union of the introns will be output. Thus when considering
an indevidual transcript, outputs will be non-overlapping. However,
overlapping, or even identical feature can be output if they belong to
different transcripts.



	merge-exons
	Merges overlapping exons for all transcripts of a gene, outputting
the merged exons. Can be used in conjunction with
merge-exons-distance to set the minimum distance that may
appear between two exons before they are merged.If
--mark-utr is set, the UTR regions will be output separately.



	merge-transcripts
	Merges all transcripts of a gene. Outputs contains a single interval that
spans the original gene (both introns and exons). If --with-utr is
set, the output interval will also contain UTR.





merge-genes


Merges genes that have overlapping exons, outputting a single
gene_id and transcript_id for all exons of overlapping genes. The
input needs te sorted by transcript ” (Does not merge intervals on
different strands).





	join-exons
	Joins together all exons of a transcript, outputting a single
interval that spans the original transcript (both introns and
exons). Input needs to be sorted by transcript.



	intersect-transcripts
	Finds regions representing the intersection of all transcripts of a gene.
Output will contain intervals spanning only those bases covered by all
transcripts. If --with-utr is set, the UTR will also be included in the
intersect. This method only uses exon or CDS features.



	merge-introns
	Outputs a single interval that spans the region between the start
of the first intron and the end of last intron. Single exons genes
will not be output. The input needs to be sorted by gene



	exons2introns
	Merges overlapping introns for all transcripts of a gene,
outputting the merged introns. Use --intron-min-length to
ignore merged introns below a specified length. Use
--intron-border to specify a number of residues to remove at
either end of output introns (residues are removed prior to
filtering on size when used in conjunction with
--intron-min-length).



	transcripts2genes
	Cluster transcripts into genes by exon overlap ignoring any
gene_ids in the gtf file. May be used in conjunction with
reset-strand





The option permit-duplicates may be specified in order to
allow gene-ids to be duplicated within the input gtf file
(i.e. for the same gene-id to appear non-consecutively within the
input file). However, this option currently only works for
merge-exons, merge-transcripts, merge-introns, and
intersect-transcripts. It DOES NOT work for merge-genes,
join-exons, or exons-file2introns.



Filtering gene sets

Options that can be used to filter gtf files. For further
detail see command line options.

Input gtfs need to be sorted so that features for a gene or transcript
appear consecutively within the file. This can be achevied using
--method=sort --sort-order.


	filter
	When filtering on the basis of ‘gene-id’ or ‘transcript-id’ a
filename containing ids to be removed may provided using
--map-tsv-file. Alternatively, a random subsample of
genes/transcripts may be retained using
--sam-fileple-size. Use --min-exons-length in conjunction
with --sam-fileple-size to specify a minimum length for
genes/transcripts to be retained. Use --ignore-strand to set
strand to ‘.’ in output.

Other filter options include longest-gene, longest-transcript,
or representative-transcript.

When filtering on the basis of gene-id, transcript-id or longest-gene,
--invert-filter may be used to invert the selection.



	remove-overlapping
	Given a second gff formatted file (--file-gff) removes
any features overlapping. Any transcripts that intersect intervals
in the supplied file are removed.  (Does not account for strand.)



	remove-duplicates
	Remove duplicate features from gtf file. The type of
feature to be removed is set by the option -duplicate-feature.
Setting --duplicate-feature to ‘gene’, ‘transcript’, or
‘coordinates’ will remove any interval for which non-consecutive
occurrances of specified term appear in input gtf file.
Setting to ‘ucsc’, will remove any interval for which
transcript-id contains ‘_dup’.







Setting fields

Options for altering fields within gtf.


	rename-genes
	With a mapping file is provided using --map-tsv-file, renames
the gene_id to the one supplied. Outputs a gtf file with
field renamed. Any entry in input gtf not appearing in
mapping file is discarded.



	rename-transcripts
	as rename-genes, but renames the transcript_id.



	add-protein-id
	Takes a map of transcript_id to protein_id from the a tsv file
(see option --map-tsv-file) and appends the protein_id
provided to the attributes field.  Any entry with a transcript_id
not appearing in the tsv file is discarded.



	renumber-genes
	Renumber genes from 1 using the pattern provided in
--pattern-identifier.



	renumber-transcripts
	Renumber transcripts from 1 using the pattern provided in
--pattern-identifier.



	unset-genes
	Renumber genes from 1 using the pattern provided in
--pattern-identifier. Transcripts with the same gene-id in the
input gtf file will have different gene-ids in the output
gtf file.



	set-transcript-to-gene
	Will set the transcript-id to the gene-id for each feature.



	set-gene-to-transcript
	Will set the gene-id to the transcript-id for each each feature.



	set-protein-to-transcript
	Will append transcript_id to attributes field as ‘protein_id’



	set-score-to-distance
	Will reset the score field (field 6) of each feature in input
gtf to be the distance from transcription start site to
the start of the feature.  (Assumes input file is sorted by
transcript-id)



	set-gene_biotype-to-source
	Sets the gene_biotype attribute from the source column. Will only set
if biotype attribute is not present in the current record.



	rename-duplicates
	Rename duplicate gene_ids and transcript_ids by addition of
numerical suffix



	set-source-to-transcript_biotype
	Sets the source attribute to the transcript_biotype
attribute. Will only set if transcript_biotype attribute is
present in the current record.








Usage

The following example sorts the input gene set by gene
(method=sort) so that it can be used as input for
method=intersect-transcripts that outputs genomic the genomic
regions within a gene that is covered by all transcripts in a gene.
Finally, the resultant transcripts are renamed with the pattern
“MERGED_%i”:

cgat gtf2gtf
        --method=sort
        --sort-order=gene     | cgat gtf2gtf
           --method=intersect-transcripts
           --with-utr
| cgat gtf2gtf
           --method=renumber-transcripts
           --pattern-identifier=MERGED_%i





Type:

cgat gtf2gtf --help





for command line options.



Command line Options



usage: gtf2gtf [-h] [--version] [--merge-exons-distance MERGE_EXONS_DISTANCE]
               [--pattern-identifier PATTERN]
               [--sort-order {gene,gene+transcript,transcript,position,contig+gene,position+gene,gene+position,gene+exon}]
               [--mark-utr] [--without-utr]
               [--filter-method {gene,transcript,longest-gene,longest-transcript,representative-transcript,proteincoding,lincrna}]
               [-a tsv] [--gff-file GFF] [--invert-filter]
               [--sample-size SAMPLE_SIZE]
               [--intron-min-length INTRON_MIN_LENGTH]
               [--min-exons-length MIN_EXONS_LENGTH]
               [--intron-border INTRON_BORDER] [--ignore-strand]
               [--permit-duplicates]
               [--duplicate-feature {gene,transcript,both,ucsc,coordinates}]
               [--use-gene-id]
               [-m {add-protein-id,exons2introns,filter,find-retained-introns,genes-to-unique-chunks,intersect-transcripts,join-exons,merge-exons,merge-transcripts,merge-genes,merge-introns,remove-overlapping,remove-duplicates,rename-genes,rename-transcripts,rename-duplicates,renumber-genes,renumber-transcripts,set-transcript-to-gene,set-gene-to-transcript,set-protein-to-transcript,set-score-to-distance,set-gene_biotype-to-source,set-source-to-transcript_biotype,sort,transcript2genes,unset-genes}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2gtf: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gtf2fasta.py - annotate genomic bases from a gene set


	Tags

	Genomics Genesets Sequences GTF FASTA Transformation






Purpose

This script can be used for a quick-and-dirty annotation of variants
in a genome. It is most appropriately used in exploratory analyses
of the effect of variants/alleles.

For a better prediction of variant effects in coding sequences,
see <no title> and <no title>.

If you wish to convert gtf intervals into fasta sequences, use gff2fasta.py.

This script takes a gtf formatted file from ENSEMBL and
annotates each base in the genome according to its function. The
script multiplexes both strands with lower- case characters referring
to the forward strand and upper-case characters referring to the
reverse strand.

The codes and their meaning are:







	code

	description



	a

	first codon position within a complete codon



	b

	second codon position within a complete codon



	c

	third codon position within a complete codon



	d

	coding base, but in multiple frames or strands



	e

	non-coding base in exon



	f

	frame-shifted base



	g

	intergenic base



	i

	intronic base



	l

	base in other RNA



	m

	base in miRNA



	n

	base in snRNA



	o

	base in snoRNA



	r

	base in rRNA (both genomic and mitochondrial)



	p

	base in pseudogene (including transcribed, unprocessed and processed)



	q

	base in retrotransposon



	s

	base within a splice signal (GT/AG)



	t

	base in tRNA (both genomic and mitochondrial)



	u

	base in 5’ UTR



	v

	base in 3’ UTR



	x

	ambiguous base with multiple functions.



	y

	unknown base







Output files

The annotated genome is output on stdout.

The script creates the following additional output files:


	counts
	Counts for each annotations



	junctions
	Splice junctions. This is a tab separated table linking residues that are
joined via features. The coordinates are forward/reverse coordinates.

The columns are:


	contig
	the contig



	strand
	direction of linkage



	end
	last base of exon in direction of strand



	start
	first base of exon in direction of strand



	frame
	frame base at second coordinate (for coding sequences)












Known problems

The stop-codon is part of the UTR. This has the following effects:



	On the mitochondrial chromosome, the stop-codon might be used for
ncRNA transcripts and thus the base is recorded as ambiguous.


	On the mitochondrial chromosome, alternative transcripts might
read through a stop-codon (RNA editing). The codon itself will be
recorded as ambiguous.









Usage

For example:

zcat hg19.gtf.gz | python gtf2fasta.py --genome-file=hg19 > hg19.annotated





Type:

python gtf2fasta.py --help





for command line help.



Command line options


	--genome-file
	required option. filename for genome fasta file



	--ignore-missing
	transcripts on contigs not in the genome file will be ignored



	--min-intron-length
	intronic bases in introns less than specified length
will be marked “unknown”







usage: gtf2fasta [-h] [--version] [-g GENOME_FILE] [-i]
                 [--min-intron-length MIN_INTRON_LENGTH] [-m {full}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gtf2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2wiggle.py - convert bam to wig/bigwig file


	Tags

	Genomics NGS Intervals Conversion BAM WIGGLE BIGWIG BEDGRAPH






Purpose

convert a bam file to a bigwig or bedgraph file.

Depending on options chosen, this script either computes the densities
itself or makes use of faster solutions if possible. The script
requires the executables wigToBigWig and bedToBigBed
to be in the user’s PATH.

If no –shift-size or –extend option are given, the coverage is computed
directly on reads.  Counting can be performed at a certain resolution.

The counting currently is not aware of spliced reads, i.e., an
inserted intron will be included in the coverage.

If –shift-size or –extend are given, the coverage is computed by shifting
read alignment positions upstream for positive strand reads or
downstream for negative strand reads and extend them by a fixed
amount.

For RNASEQ data it might be best to run genomeCoverageBed directly on
the bam file.



Usage

Type:

cgat bam2wiggle           --output-format=bigwig           --output-filename-pattern=out.bigwig in.bam





to convert the bam file file:in.bam to bigwig format
and save the result in out.bigwig.



Command line options



usage: bam2wiggle [-h] [--version] [-o {bedgraph,wiggle,bigbed,bigwig,bed}]
                  [-s SHIFT] [-e EXTEND] [-p SPAN] [-m]
                  [--scale-base SCALE_BASE] [--scale-method {none,reads}]
                  [--max-insert-size MAX_INSERT_SIZE]
                  [--min-insert-size MIN_INSERT_SIZE] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                  [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2wiggle: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bed2annotator.py - convert bed to annotator format


	Tags

	Python






Purpose

This script converts a bed file into annotator compatible regions. Depending on the option –section
this script will create:



	segments
	a segments file



	annotations
	a file with annotations. Each bed track is a separate annotation.



	workspace
	a file with a workspace










Usage

Example:

python bed2annotator2tsv.py --help





Type:

python bed2annotator2tsv.py --help





for command line help.



Command line options



usage: bed2annotator [-h] [-g GENOME_FILE] [-f FEATURES] [-i FILES]
                     [-a ANNOTATIONS] [--map-tsv-file INPUT_FILENAME_MAP]
                     [-l MAX_LENGTH] [-m]
                     [-s {segments,annotations,workspace}] [--subset SUBSETS]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
bed2annotator: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bed2graph.py - compute the overlap graph between two bed files


	Tags

	Python






Purpose

This script ouputs a list of the names of all overlapping intervals
between two bed files.



Usage

Type:

python bed2graph.py A.bed.gz B.bed.gz > graph.out





for command line help.



Command line options



usage: bed2graph [-h] [--version] [-o {full,name}] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2graph: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
chain2psl.py - convert a chain file to a psl file


	Tags

	Genomics Intervals GenomeAlignment PSL CHAIN Conversion






Purpose

convert a UCSC chain [http://www.breyer.com/ucsc/htdocs/goldenPath/help/chain.html]
formatted file to a UCSC psl [http://genome.ucsc.edu/FAQ/FAQformat.html#format2] formatted file.

This tool is equivalent to the UCSC tool chainToPsl except that it
will not compute the number of matching, mismatching, etc. bases and
thus does not require the sequences.

The nomenclature the UCSC uses for its chain files is
targetToQuery.chain for mapping query to target
(reference). According to the UCSC documentation, target is the
first entry in chain files.

We have been using the nomenclature QueryToTarget.psl. In following
this convention, the correct way to converting a psl file is:

python chain2psl.py < targetToQuery.chain > QueryToTarget.psl





If you would like to keep the TargetToQuery convention, you will need
to add a pslSwap:

python chain2psl.py < targetToQuery.chain | pslSwap stdin stdout > targetToQuery.psl







Usage

For example:

cgat chain2psl.py < in.chain > out.psl





Type:

cgat chain2psl.py --help





for command line help.



Command line options



usage: chain2psl [-h] [--version] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
chain2psl: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
diff_bed.py - count differences between several bed files


	Tags

	Genomics Intervals BED Comparison






Purpose

Compute overlap statistics between multiple bed files. For each pairwise
comparison, this script outputs the number of intervals (exons) and
bases overlapping.

Using the --update option, a table can be incrementally updated with
additional comparisons.

The strand of intervals is ignored in comparisons.







	Column

	Content



	set

	Name of the set



	nexons_total

	number of intervals in set



	nexons_ovl

	number of intervals overlapping



	nexons_unique

	number of unique intervals



	nbases_total

	number of bases in gene set



	nbases_ovl

	number of bases overlapping



	nbases_unique

	number of unique bases








Usage

For example:

python diff_bed.py *.bed.gz > out.tsv





To update results from a previous run, type:

python diff_bed.py --update=out.tsv *.bed.gz > new.tsv





Type:

python diff_bed.py --help





for command line help.



Command line options



usage: diff-bed [-h] [--version] [-u FILENAME_UPDATE] [-p PATTERN_ID] [-t]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
diff-bed: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
fasta2bed.py - segment sequences


	Tags

	Genomics Sequences Intervals FASTA BED Conversion






Purpose

This script takes a genomic sequence in fasta format
and applies various segmentation algorithms.

The methods implemented (--methods) are:


	cpg
	output all locations of cpg in the genome



	fixed-width-windows-gc
	output fixed width windows of a certain size adding their
G+C content as score



	gaps
	ouput all locations of assembly gaps (blocks of N)
in the genomic sequences



	ungapped
	output ungapped locations in the genomic sequences







Usage

Type:

python fasta2bed.py --method=gap < in.fasta > out.bed





Type:

python fasta2bed.py --help





for command line help.



Command line options



usage: fasta2bed [-h] [--version]
                 [-m {fixed-width-windows-gc,cpg,windows-cpg,gaps,ungapped,windows}]
                 [-w WINDOW_SIZE] [-s WINDOW_SHIFT] [--min-cpg MIN_CPG]
                 [--min-interval-length MIN_LENGTH] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
fasta2bed: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
gff2table.py - compute features for intersection of two gff files


	Tags

	Genomics Intervals Annotation Comparison GFF






Purpose

collect intervals from two gff files and compute features based on
their intersection. The script is intended to compute properties for a
set of non-overlapping windows.


	Transforms:
	
	none:        no transform


	overlap:     overlap between set1 and set2


	complement:  part of set1 that is not covered by set2


	
	third_codon: only takes every third position. Needs frame information
	in the gff file.











	Decorators:
	
	GC:            G+C content of intervals


	count:         number of windows


	mean-length:   mean length of intervals overlapping with window










Usage

Example:

python gff2table.py --help





Type:

python gff2table.py --help





for command line help.



Command line options



usage: gff2table [-h] [--version] [-g GENOME_FILE] [-w FILENAME_WINDOWS]
                 [-d FILENAME_DATA] [--is-gtf] [-f {GC}]
                 [-c {counts,gc,gc3,mean-length,median-length,percent-coverage,median-score,mean-score,stddev-score,min-score,max-score}]
                 [-e] [-t {none,overlap,complement,third_codon}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
gff2table: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
index_fasta.py - Index fasta formatted files


	Tags

	Genomics Sequences FASTA Manipulation






Purpose

This script indexes one or more fasta formatted files into a
database that can be used by other scripts in the cgat code collection
and IndexedFasta for quick access to a particular part of a sequence.
This is very useful for large genomic sequences.

By default, the database is itself a fasta formatted file in
which all line breaks and other white space characters have been
removed.  Compression methods are available to conserve disk space,
though they do come at a performance penalty.

The script implements several indexing and compression methods.  The
default method uses no compression and builds a simple random access
index based on a table of absolute file positions.  The sequence is
stored in a plain fasta file with one line per sequence allowing to
extract a sequence segment by direct file positioning.

Alternatively, the sequence can be block-compressed using different
compression methods (gzip, lzo, bzip). These are mostly for research
purposes.

See also http://pypi.python.org/pypi/pyfasta for another
implementation.  Samtools provides similar functionality with the
samtools faidx command and block compression has been implemented
in the `bgzip http://samtools.sourceforge.net/tabix.shtml>`_ tool.

The script permits supplying synonyms to the database index. For
example, setting --synonyms=chrM=chrMT will ensure that the
mitochondrial genome sequence is returned both for the keys chrM
and chrMT.

Examples

Index a collection of fasta files in a compressed archive:

python index_fasta.py oa_ornAna1_softmasked ornAna1.fa.gz > oa_ornAna1_softmasked.log





To retrieve a segment:

python index_fasta.py --extract=chr5:1000:2000 oa_ornAna1_softmasked





Indexing from a tar file is possible:

python index_fasta.py oa_ornAna1_softmasked ornAna1.tar.gz > oa_ornAna1_softmasked.log





Indexing from stdin requires to use the - place-holder:

zcat ornAna1.fa.gz | python index_fasta.py oa_ornAna1_softmasked - > oa_ornAna1_softmasked.log







Usage

Type:

cgat index_genome DATABASE [SOURCE...|-] [OPTIONS]
cgat index_genome DATABASE [SOURCE...|-] --compression=COMPRESSION --random-access-points=100000





To create indexed DATABASE from SOURCE. Supply - as SOURCE to read from stdin.
If the output is to be compressed, a spacing for the random access points must
be supplied.

Type:

cgat index_genome DATABASE --extract=CONTIG:[STRAND]:START:END





To extract the bases on the STRAND strand, between START to END from
entry CONTIG, from DATABASE.



Command line options



usage: index-fasta [-h] [--version] [-e EXTRACT]
                   [-i {one-forward-open,zero-both-open}] [-s SYNONYMS] [-b]
                   [--benchmark-num-iterations BENCHMARK_NUM_ITERATIONS]
                   [--benchmark-fragment-size BENCHMARK_FRAGMENT_SIZE]
                   [--verify VERIFY]
                   [--verify-iterations VERIFY_NUM_ITERATIONS]
                   [--file-format {fasta,auto,fasta.gz,tar,tar.gz}] [-a]
                   [--allow-duplicates] [--regex-identifier REGEX_IDENTIFIER]
                   [--force-output] [-t {solexa,phred,bytes,range200}]
                   [-c {lzo,zlib,gzip,dictzip,bzip2,debug}]
                   [--random-access-points RANDOM_ACCESS_POINTS]
                   [--compress-index] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
index-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
diff_fasta.py - compare contents of two fasta files


	Tags

	Genomics Sequences FASTA Comparison






Purpose

This script takes two sets of fasta sequences and matches the
identifiers. It then compares the sequences with the same identifiers
and, depending on the output options selected, outputs



	which sequences are missing


	which sequences are identical


	which sequences are prefixes/suffixes of each other







An explanatory field is appended to output sequence identifiers.
An explanation of the different field values is provided in the log.



Options


	-s, --correct-gap-shift

	This option will correct shifts in alignment gaps between
two sequences being compared



	-1, --pattern1

	regular expression pattern to extract identifier from in sequence 1



	-2, --pattern2

	regular expression pattern to extract identifier from in sequence 2





Depending on the option --output-section the following are output:



	diff
	identifiers of sequences that are different



	seqdiff
	identifiers of sequences that are different plus sequence



	missed
	identifiers of seqences that are missing from one set or the other








This script is of specialized interest and has been used
in the past to check if ENSEMBL gene models had been
correctly mapped into a database schema.



Usage

Example:

cat a.fasta | head

>ENSACAP00000004922
MRSRNQGGESSSSGKFSKSKPIINTGENQNLQEDAKKKNKSSRKEE ...
>ENSACAP00000005213
EEEEDESNNSYLYQPLNQDPDQGPAAVEETAPSTEPALDINERLQA ...
>ENSACAP00000018122
LIRSSSMFHIMKHGHYISRFGSKPGLKCIGMHENGIIFNNNPALWK ...

python diff_fasta.py --output-section=missed --output-section=seqdiff a.fasta b.fasta

cat diff.out

# Legend:
# seqs1:          number of sequences in set 1
# seqs2:          number of sequences in set 2
# same:           number of identical sequences
# diff:           number of sequences with differences
# nmissed1:       sequences in set 1 that are not found in set 2
# nmissed2:       sequences in set 2 that are not found in set 1
# Type of sequence differences
# first:          only the first residue is different
# last:           only the last residue is different
# prefix:         one sequence is prefix of the other
# selenocysteine: difference due to selenocysteines
# masked:         difference due to masked residues
# fixed:          fixed differences
# other:          other differences





Type:

python diff_fasta.py --help





for command line help.



Command line options



usage: diff-fasta [-h] [--version] [-s] [-1 PATTERN1] [-2 PATTERN2]
                  [-o {diff,missed,seqdiff}] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
diff-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csvs2csv.py - join tables


	Tags

	Python






Purpose

This script reads several tab-separated tables and joins them.


Note

working with multiple columns per table and sorting is
not implemented correctly and likely to fail.





Usage

Example:

python combine_tables.py --help





Type:

python combine_tables.py --help





for command line help.



Command line options



usage: csvs2csv [-h] [--version] [-t] [-i] [-m MISSING_VALUE]
                [--header-names HEADERS] [-c COLUMNS] [-g GLOB] [-s SORT] [-e]
                [--sort-keys {numeric,alphabetic}] [--keep-empty]
                [--add-file-prefix] [--regex-filename REGEX_FILENAME]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
csvs2csv: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv2csv.py - operate on tables


	Tags

	Python






Purpose

operate on tables.



Usage

Example:

python csv2csv.py --help





Type:

python csv2csv.py --help





for command line help.



Command line options



usage: csv2csv [-h] [--version] [-s SORT] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv2csv: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv2db.py - upload table to database


	Tags

	Python






Purpose

create a table from a csv separated file and load data into it.

This module supports backends for postgres and sqlite3. Column types are
auto-detected.

Read a table from stdin and create an sqlite3 database. By default,
the database will reside in a file called csvdb and in a table csv.


Todo

Use file import where appropriate to speed up loading. Currently, this is
not always the case.





Usage

Example:

python csv2db.py -b sqlite < stdin





Type:

python csv2db.py --help





for command line help.



Command line options



usage: csv2db [-h] [--version] [--csv-dialect DIALECT] [-m MAP] [-t TABLENAME]
              [-H HEADER_NAMES] [--replace-header] [-l]
              [--chunk-size CHUNK_SIZE] [--ignore-column IGNORE_COLUMNS]
              [--rename-column RENAME_COLUMNS] [--first-column FIRST_COLUMN]
              [-e] [-i INDICES] [-a] [--retry] [--append] [--utf8]
              [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
              [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
              [--log-config-filename LOG_CONFIG_FILENAME]
              [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG] [-E STDERR]
              [-S STDOUT] [--database-url DATABASE_URL]
              [--database-schema DATABASE_SCHEMA]
csv2db: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv_cut.py - select columns from a table


	Tags

	Python






Purpose

extract named columns from a csv formatted table


Todo

describe purpose of the script.





Usage

Extract the two columns gene and length from a table in standard input:

python csv_cut.py gene length < stdin





The script permits the use of patterns. For example, the command will
select the column gene and all columns that contain the part ‘len’:

python csv_cut.py gene %len% < stdin





Type:

python csv_cut.py --help





for command line help.



Command line options



usage: csv-cut [-h] [-r] [-u] [-l] [-f FILENAME_FIELDS] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-cut: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv_intersection.py - intersect two tables


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python csv_intersection.py --help





Type:

python csv_intersection.py --help





for command line help.



Command line options



usage: csv-intersection [-h] [--version] [-u] [--timeit TIMEIT_FILE]
                        [--timeit-name TIMEIT_NAME] [--timeit-header]
                        [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                        [--log-config-filename LOG_CONFIG_FILENAME]
                        [--tracing {function}] [-? ?]
                        [--csv-dialect CSV_DIALECT] [-I STDIN] [-L STDLOG]
                        [-E STDERR] [-S STDOUT]
csv-intersection: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv_rename.py - rename columns in a table


	Tags

	Python






Purpose

rename columns in a csv file



Usage

Example:

csv_rename.py gene=id < stdin





Type:

python csv_rename.py --help





for command line help.



Command line options



usage: csv-rename [-h] [--version] [-r] [-u] [-f FILENAME_FIELDS]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
                  [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-rename: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
csv_set.py - set operations on a table


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python csv_set.py --help





Type:

python csv_set.py --help





for command line help.



Command line options



usage: csv-set [-h] [--version] [-u] [-1 JOIN_FIELDS1] [-2 JOIN_FIELDS2]
               [-m {intersection,rest,union}] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-set: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
cat_tables.py - concatenate tables


	Tags

	Python






Purpose

concatenate tables. Headers of subsequent files are ignored.



Usage

Type:

python <script_name>.py --help





for command line help.



Command line options



usage: cat-tables [-h] [--version] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
cat-tables: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
table2table.py - operate on tables


	Tags

	Python






Purpose

This script implements a few methods for manipulating tables.


Methods working on all tables:


	transpose
	transpose a table



	split-fields
	Split muliple-value fields in each row at --separator. Output
multiple rows with all combinations.



	group
	Group values by column



	join-column
	Join rows in a table by columns



	expand-table
	If a field in a row contains multiple values,
the row is expanded into multiple rows such
that all values have space.



	flatten-table
	Output a table as row/column/value tuples.



	as-column
	Output table as a single column. Colums in the original table are
appended and output.



	collapse-table
	Collapse a table of two columns with row names in the first
column. Outputs a table with multiple columns for each row name.







Methods for numerical columns

Some methods make only sense for columns containing numerical values.
If a table contains both numerical and non-numerical data, the
numerical columns can be specified by the --columns option.


	normalize-by-value
	divide all cells in a table by a value



	multiply-by-value
	multiply all cells in a table by a value



	lower-bound
	replace all cells with a value of less than lower bound with the lower
bound.



	upper-bound
	replace all cells with a value of more than upper bound with the upper
bound.



	normalize-by-table
	divide each cell in a table with the corresponding entry in a secondary
table.



	normalize-by-max
	divide table columns by maximum per column



	kullback-leibler
	compute kullback-leibler divergence between two columns. Compute
both D(a||b), D(b||a) and (D(a||b) + D(b||a)) / 2



	rank
	substitute cells with their ranks in a column



	fdr
	compute an FDR over selected columns. Replaces the columns
with the qvalues.








Usage

Example:

python table2table.py --help





Type:

python table2table.py --help





for command line help.



Command line options



usage: table2table [-h] [--version]
                   [-m {transpose,normalize-by-max,normalize-by-value,multiply-by-value,percentile,remove-header,normalize-by-table,upper-bound,lower-bound,kullback-leibler,expand,compress,fdr,grep,randomize-rows}]
                   [-s SCALE] [-f FORMAT] [-p PARAMETERS] [-t] [--transpose]
                   [--set-transpose-field SET_TRANSPOSE_FIELD]
                   [--transpose-format {default,separated}] [--expand]
                   [--no-headers] [--columns COLUMNS] [--file FILE] [-d DELIM]
                   [-V] [--sort-by-rows SORT_ROWS] [-a VALUE]
                   [--group GROUP_COLUMN]
                   [--group-function {min,max,sum,mean,stats,cat,uniq}]
                   [--join-table JOIN_COLUMN]
                   [--collapse-table COLLAPSE_TABLE]
                   [--join-column-name JOIN_COLUMN_NAME] [--flatten-table]
                   [--as-column] [--split-fields] [--separator SEPARATOR]
                   [--fdr-method {BH,bonferroni,holm,hommel,hochberg,BY}]
                   [--fdr-add-column FDR_ADD_COLUMN] [--id-column ID_COLUMN]
                   [--variable-name VARIABLE_NAME] [--value-name VALUE_NAME]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
table2table: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
data2histogram.py - histogram data in a table


	Tags

	Python






Purpose

This script computes histograms over one or more
columns of a table.



Usage

Example:

python data2histogram.py --help





Type:

python data2histogram.py --help





for command line help.



Command line options



usage: data2histogram [-h] [-r RANGE] [-b BIN_SIZE] [-i] [--no-null]
                      [--no-titles] [-c COLUMNS] [--min-data MIN_DATA]
                      [--min-value MIN_VALUE] [--max-value MAX_VALUE]
                      [--no-empty-bins] [--with-empty-bins] [--normalize]
                      [--cumulative] [--reverse-cumulative]
                      [--header-names HEADERS] [--ignore-out-of-range]
                      [--missing-value MISSING_VALUE] [--use-dynamic-bins]
                      [--on-the-fly] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
data2histogram: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
split_file.py - split a file into parts


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python split_file.py --help





Type:

python split_file.py --help





for command line help.



Command line options



python /home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat < stdin > stdout

split a file into chunks.

OPTIONS:
-h, --help                      print this message.
-v, --verbose=                  loglevel.
-r, --split-regex               split at regular expression
-a, --after                     split after match
-s, --skip                      do not echo match
-p, --pattern-output            pattern of output files (has to contain s)
-c, --column=                   split according to column
-m, --map=                      split according to map
-d, --dry-run                   echo files that would be created,
                                but do not create any.
-e, --header-names                    add header to each file
-r, --remove-key                remove key column
-append                         append data to existing files.
--pattern-identifier            if given, use this pattern to extract
                                id from column.
--chunk-size                    Number of matching records in each output file
--version                       output version information
 option -? not recognized







            

          

      

      

    

  

    
      
          
            
  
cgat_script_template.py - template for cgat scripts


	Author

	


	Tags

	Python






Purpose



Usage

Example:

python cgat_script_template.py





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: cgat-script-template [-h] [-t TEST] [--timeit TIMEIT_FILE]
                            [--timeit-name TIMEIT_NAME] [--timeit-header]
                            [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                            [--log-config-filename LOG_CONFIG_FILENAME]
                            [--tracing {function}] [-? ?] [-I STDIN]
                            [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-script-template: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2UniquePairs.py - filter/report uniquely mapped read pairs from a (bwa!) bam-file


	Tags

	Genomics NGS






Purpose

Utility script to report and/or filter out “uniquely mapped” properly
paired reads

Reports:


	The percentage of properly mapped read pairs with at least one
uniquely mapped (XT=U) read


	The percentage of properly mapped read pairs with at least one best
mapped (X0-1) read


	The percentage of properly mapped read pairs with at least one
uniquely or best mapped (X0-1) read




If outfile is specified, reads are emitted when they are properly
paired and the pair has at least one read that is either best or
uniquely mapped.

Duplication is ignored.

Only BWA is supported.

TODO: cache and emit reads rather than iterating over the samfile twice…



usage: bam2UniquePairs [-h] [--version] [-f FILENAME] [-a ALIGNER] [-r REPORT]
                       [-o OUTFILE] [--timeit TIMEIT_FILE]
                       [--timeit-name TIMEIT_NAME] [--timeit-header]
                       [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?]
                       [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                       [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2UniquePairs: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2bam.py - modify bam files


Purpose

This script reads a bam formatted file from stdin, performs an
action (see methods below) then outputs a modified bam
formatted file on stdout.


Note

You need to redirect logging information to a file (via -L) or turn it off
via -v 0 in order to get a valid sam/bam file.





Documentation

The script implements the following methods:

set-nh


set the NH flag. Some tools (bowtie, bwa) do not set the NH flag.
If set, this option will set the NH flag (for mapped reads).
This option requires the bam/sam file to be sorted by read name.




unset-unmapped_mapq


some tools set the mapping quality of unmapped reads. This
causes a violation in the Picard tools.




filter


remove alignments based on a variety of flags. The filtering method
is determined by the --filter-method option. These may be
unique, non-unique, mapped, NM or CM.  If
unique is set, only uniquely mapping reads will be output. If
non-unique is set then only multi-mapping reads will be
output. This method first checks for the NH flag - if set, a unique
match should have at most NH=1 hits.  If not set, the method checks
for BWA flags. Currently it checks if X0 is set (X0=Number of best
hits found by BWA).  If mapped is given, unmapped reads will be
removed. If NM or CM is set, the alignment of reads in two
sam files (input and reference) is compared and only reads with a
lower number of mismatches in the input compared to the reference
sam file will be kept. If CM is set, the colourspace mismatch
tag (for ABI Solid reads) will be used to count differences to the
reference sam file. By default, the NM (number of mismatches)
tag is used. The tag that is used needs to present in both input
sam file and the reference sam file. If unique is given this
wil NOT remove any unmapped reads.  This can be achieved by
providing the filter option twice, once each with mapped
and unique.


Note

The filter methods can’t currently combined with any of
the other methods - this is work in progress.






strip-sequence


remove the sequence from all reads in a bam-file. Note that
stripping the sequence will also remove the quality scores.
Stripping is not reversible if the read names are not unique.




strip-quality


remove the quality scores from all reads in a bam-file.
Stripping is not reversible if the read names are not unique.




set-sequence


set the sequence and quality scores in the bam file to some dummy
values (‘A’ for sequence, ‘F’ for quality which is a valid score in
most fastq encodings. Necessary for some tools that can not work
with bam-files without sequence.




unstrip


add sequence and quality scores back to a bam file. Requires a
fastq formatted file with the sequences and quality scores
to insert.




unset-unmapped-mapq


sets the mapping quality of unmapped reads to 0.




keep-first-base


keep only the first base of reads so that read counting tools will
only consider the first base in the counts




downsample-single


generates a downsampled bam file by randomly subsampling
reads from a single ended bam file. The downsmpling
retains multimapping reads. The use of this requires downsampling
parameter to be set and optionally randomseed.




downsample-paired


generates a downsampled bam file by randomly subsampling
reads from a paired ended bam file. The downsampling
retains multimapping reads. The use of this requires downsampling
parameter to be set and optionally randomseed.




add-sequence-error


add a certain amount of random error to read sequences. This method
picks a certain proportion of positions within a read’s sequence
and alters the nucleotide to a randomly chosen alternative. The
model is naive and applies uniform probabilities for positions and
nucleotides. The method does not update base qualities, the
alignment and the NM flag. As a result, error rates that are
computed via the NM flag will be unaffected. The error rate is set
by –error-rate.




By default, the script works from stdin and outputs to stdout.



Usage

For example:

cgat bam2bam --method=filter --filter-method=mapped < in.bam > out.bam





will remove all unmapped reads from the bam-file.

Example for running downsample:

cgat bam2bam –method=downsample-paired –downsample=30000
–randomseed=1 -L out.log < Paired.bam > out.bam

Type:

cgat bam2bam --help





for command line help.



Command line options



usage: bam2bam [-h] [--version]
               [-m {filter,keep-first-base,set-nh,set-sequence,strip-sequence,strip-quality,unstrip,unset-unmapped-mapq,downsample-single,downsample-paired,add-sequence-error}]
               [--strip-method {all,match}]
               [--filter-method {NM,CM,mapped,unique,non-unique,remove-list,keep-list,error-rate,min-read-length,min-average-base-quality}]
               [--reference-bam-file REFERENCE_BAM] [--force-output]
               [--output-sam] [--first-fastq-file FASTQ_PAIR1]
               [--second-fastq-file FASTQ_PAIR2] [--downsample DOWNSAMPLE]
               [--filename-read-list FILENAME_READ_LIST]
               [--error-rate ERROR_RATE]
               [--minimum-read-length MINIMUM_READ_LENGTH]
               [--minimum-average-base-quality MINIMUM_AVERAGE_BASE_QUALITY]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bam2bam: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2bed.py - convert bam formatted file to bed formatted file


	Tags

	Genomics NGS Intervals BAM BED Conversion






Purpose

This tool converts BAM files into BED files supplying the intervals
for each read in the BAM file.  BAM files must have a corresponding
index file ie. example.bam and example.bam.bai

For example:

samtools view example.bam

READ1    163    1      13040   15     76M    =      13183   219     ...
READ1    83     1      13183   7      76M    =      13040   -219    ...
READ2    147    1      13207   0      76M    =      13120   -163    ...

python bam2bed.py example.bam

1       13039   13115   READ1     15      +
1       13119   13195   READ2     0       +
1       13182   13258   READ1     7       -
1       13206   13282   READ2     0       -





By default, bam2bed outputs each read as a separate interval.  With
the option --merge-pairs paired-end reads are merged and output as
a single interval. The strand is set according to the first read in a
pair.



Usage

cgat bam2bed BAMFILE [--merge-pairs] [options]





operates on the file BAMFILE:

cgat bam2bed [--merge-pairs] [options]





operates on the stdin as does:

cgat bam2bed -I BAMFILE [--merge-pairs] [options]





To merge paired-end reads and output fragment interval ie. leftmost
mapped base to rightmost mapped base:

cat example.bam | cgat bam2bed --merge-pairs

1       13119   13282   READ2     0       +
1       13039   13258   READ1     7       +





To use merge pairs on only a region of the genome use samtools view:

samtools view -ub example.bam 1:13000:13100 | cgat bam2bed --merge-pairs





Note that this will select fragments were the first read-in-pair is in
the region.



Options


	-m, --merge-pairs

	Output one region per fragment rather than one region per read,
thus a single region is create stretching from the start of the
frist read in pair to the end of the second.

Read pairs that meet the following criteria are removed:


	Reads where one of the pair is unmapped


	Reads that are not paired


	Reads where the pairs are mapped to different chromosomes


	Reads where the the insert size is not between the max and
min (see below)









Warning

Merged fragements are always returned on the +ve strand.
Fragement end point is estimated as the alignment start position
of the second-in-pair read + the length of the first-in-pair
read. This may lead to inaccuracy if you have an intron-aware
aligner.




	--max-insert-size, --min-insert-size

	The maximum and minimum size of the insert that is allowed when
using the –merge-pairs option. Read pairs closer to gether or futher
apart than the min and max repsectively are skipped.



	-b, --bed-format

	What format to output the results in. The first n columns of the bed
file will be output.





Type:

python bam2bed.py --help





for command line help.



Command line options



usage: bam2bed [-h] [--version] [-m] [--max-insert-size MAX_INSERT_SIZE]
               [--min-insert-size MIN_INSERT_SIZE] [--bed-format {3,4,5,6}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bam2bed: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2fastq.py - output fastq files from a bam-file


	Tags

	Genomics NGS Sequences BAM FASTQ Conversion






Purpose

This script takes a bam formatted file and converts to it to
one or two fastq formatted files for single-end or paired-end
data, respectively.

For paired-end data, the first fastq file contains the first read of a
read pair and the other contains the second read of read pair.

Example

For example:

cat in.bam cgat bam2fastq out.1.fastq.gz out.2.fastq.gz





This command converts the bam formatted file in.bam into
fastq files containing forward reads (out.1.fastq.gz) and
reverse reads (out.2.fastq.gz).  The output files can alternatively
supplied via the option --output-pattern-filename. The statement
below will create the same two output files:

cat in.bam cgat bam2fastq --output-filename-pattern=out.%s.fastq.gz





Type:

python bam2fastq.py --help





for command line help.



Command line options



usage: bam2fastq [-h] [--version] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  
bam2peakshape.py - compute peak shape features from a bam-file


	Tags

	Genomics NGS Intervals BAM BED Summary






Purpose

This script takes a bed formatted file with regions of
interest, for example binding intervals from a ChIP-Seq
experiment. Using a collection of aligned reads is a bam
formatted file or bigwig formatted file, the script outputs a
collection of features describing the peak shape.

This script is designed with a slight emphasis on ChIP-Seq datasets.
The main reason that this script is better suited for ChIP-Seq is
that(1) it is able to center the counting window at the summit of
every individual peak; (2) it is also able to use the control ChIP-Seq
library to enable side-by-side comparison of treatment vs control;(3)
it can randomly shift the set of input regions to generate a
artificial set of regions, in the absence of real ChIP-Seq control
library, the random regions can provide a peaks profile that can be
used as the control.

For example, given the peaks regions defined by analyzing some
ChIP-Seq dataset (e.g. by using MACS), and without the need to use any
additional genomic annotations (e.g. ENSEMBL, refseq), we can
visualise the binding profiles of transcriptionfactors ChIP-Seq data
relative to the center of each peak regions.

The script outputs a tab-separated table on stdout containing features
for each interval. A peak is defined as the location of the highest
density in an interval. The width of the peak (peak_width) is defined
as the region around the peak in which the density does not drop below
a threshold of peak_heigt * 90%.



Usage


Detailed usage example

The following command will generate the peak shape plot for the peak
regions defined in onepeak.bed, using the reads stored in
small.bam.  The command will also create a profile for the
control library.  The control library in this example is re-using the
same reads file small.bam, however, in your actual experiment,
it should be a different library (the input library for this ChIP-Seq
experiment).:

python ./scripts/bam2peakshape.py         ./tests/bam2peakshape.py/small.bam         ./tests/bam2peakshape.py/onepeak.bed         --control-bam-file=./tests/bam2peakshape.py/small.bam         --use-interval         --normalize-transcript







Output files

Among the features output are:







	Column

	Content



	peak_height

	number of reads at peak



	peak_median

	median coverage compared to peak height



	interval_width

	width of interval



	peak_width

	width of peak



	bins

	bins for a histogram of densities within the interval.



	npeaks

	number of density peaks in interval.



	peak_center

	point of highest density in interval



	peak_relative_pos

	point of highest density in interval coordinates



	counts

	counts for a histogram of densities within the interval



	furthest_half_heigh

	Distance of peak center to furthest half-height position



	closest_half_height

	Distance of peak center to closest half-height position






Additionally, the script outputs a set of matrixes with densities over
intervals that can be used for plotting. The default filenames are
(matrix|control)_<sortorder>.tsv.gz, The names can be controlled
with the --output-filename-pattern option.

Type:

python bam2peakshape.py --help





for command line help.




Options


Option: Shift

shift the each read by a certain distance, because in a ChIP-Seq
experment, the read is always at the edge of an sonicated fragment,
the actual binding site is usually L/2 distance away from the read,
where L is the length of sonicated fragment (determined either
experimentally or computationally).

This option is used only if the input reads are in bam formatted file.
If input reads are bigwig formatted file, this option is ignored.



Option: Random shift

randomly shift the set of input regions to generate a artificial set
of regions. In the absence of real ChIP-Seq control library, the
random regions can provide a peaks profile that can be used as the
control.



Option: Centring method

“reads” will output in the way that the summit of the peaks are
aligned. “middle” will output in the way that the middle of the input
bed intervals are aligned.



Option: Only interval

Only count reads that are in the interval as defined by the input bed file.



Option: normalization=sum

normalize counts such that the sum of all counts in all features are
exactly 1000000.

The detail normalization algorithm as follows: norm = sum(all counts
in all features)/1000000.0 normalized count = normalized count / norm


Todo

paired-endedness is not fully implemented.






Command line options



usage: bam2peakshape [-h] [--version] [-f {bam,bigwig}] [-o] [-w WINDOW_SIZE]
                     [-b BIN_SIZE] [--smooth-method {none,sum,sg}]
                     [-s {peak-height,peak-width,unsorted,interval-width,interval-score}]
                     [-c CONTROL_FILES] [-r] [-e {reads,middle}]
                     [-n {none,sum}] [--use-strand] [-i SHIFT]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
bam2peakshape: error: argument -?: expected one argument







            

          

      

      

    

  

    
      
          
            
  compute stats from a bam-file


Purpose

This script takes a bam file as input and computes a few metrics by
iterating over the file. The metrics output are:







	Category

	Content



	total

	total number of alignments in bam file



	alignments_mapped

	alignments mapped to a chromosome (bam
flag)



	alignments_unmapped

	alignments unmapped (bam flag)



	qc_fail

	alignments failing QC (bam flag)



	mate_unmapped

	alignments in which the mate is unmapped
(bam flag)



	reverse

	alignments in which read maps to reverse
strand (bam flag)



	mate_reverse

	alignments in which mate maps to reverse
strand (bam flag)



	proper_pair

	alignments in which both pairs have been
mapped properly (according to the mapper)
(bam flag)



	read1

	alignments for 1st read of pair (bam flag)



	paired

	alignments of reads that are paired (bam
flag)



	duplicate

	read is PCR or optical duplicate (bam
flag)



	read2

	alignment is for 2nd read of pair (bam
flag)



	secondary

	alignment is not primary alignment



	alignments_duplicates

	number of alignments mapping to the same
location



	alignments_unique

	number of alignments mapping to unique
locations



	reads_total

	number of reads in file. Either given via
–num-reads or deduc ed as the sum of
mappend and unmapped reads



	reads_mapped

	number of reads mapping in file. Derived
from the total number o f alignments and
removing counts for multiple
matches. Requires the NH flag to be set
correctly.



	reads_unmapped

	number of reads unmapped in file. Assumes
that there is only one
entry per unmapped read.



	reads_missing

	number of reads missing, if number of
reads given by –input-rea ds. Otherwise
0.



	pairs_total

	number of total pairs - this is the number
of reads_total divided by two. If there
were no pairs, pairs_total will be 0.



	pairs_mapped

	number of mapped pairs - this is the same
as the number of proper pairs.






Additionally, the script outputs histograms for the following tags and
scores.


	NM: number of mismatches in alignments.


	NH: number of hits of reads.


	mapq: mapping quality of alignments.





Supplying a fastq file

If a fastq file is supplied (--fastq-file), the script will
compute some additional summary statistics. However, as it builds a dictionary
of all sequences, it will also require a good  amount of memory. The additional
metrics output are:







	Category

	Content



	pairs_total

	total number of pairs in input data



	pairs_mapped

	pairs in which both reads map



	pairs_unmapped

	pairs in which neither read maps



	pairs_proper_unique

	pairs which are proper and map uniquely.



	pairs_incomplete_unique

	pairs in which one of the reads maps
uniquely, but the other does not map.



	pairs_incomplete_multimapping

	pairs in which one of the reads maps
uniquely, but the other maps to multiple
locations.



	pairs_proper_duplicate

	pairs which are proper and unique, but
marked as duplicates.



	pairs_proper_multimapping

	pairs which are proper, but map to
multiple locations.



	pairs_not_proper_unique

	pairs mapping uniquely, but not flagged
as proper



	pairs_other

	pairs not in any of the above categories






Note that for paired-end data, any 
  
    
    

    beds2counts - compute overlap stats between multiple bed files
    

    

    

    
 
  

    
      
          
            
  
beds2counts - compute overlap stats between multiple bed files


	Tags

	Genomics Intervals Comparison BED Counting






Purpose

This script takes multiple bed files e.g. from multiple samples from
the same experiment. It assesses the overlap between samples and
outputs a count for each merged interval corresponding to the number
of samples that a particular interval was found in.

Example

For example if the command:

cgat bed2counts a.bed b.bed c.bed > output.tsv





is run, where a.bed-c.bed look like:

                 1         2         3         4
       012345678901234567890123456789012345678901234
a.bed: -------          -----               -------
b.bed:      -----        --
c.bed:  ---

Union: ----------       -----               -------





Then output.tsv will look like:

contig      start   end     count
chr1        0       7       3
chr1        17      22      2
chr1        37      44      1







Options

The only option other than the standard cgat options is -i, –bed-file this
allows the input files to be provided as a comma seperated list to the option
rather than a space delimited set of positional arguements. It is present
purely for galaxy compatibility.



Usage


cgat beds2counts BED [BED …] [OPTIONS]






Command line options



usage: beds2counts [-h] [--version] [--bed-file bed] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]

beds2counts - compute overlap stats between multiple bed files
=================================================================

:Tags: Genomics Intervals Comparison BED Counting

Purpose
-------

This script takes multiple bed files e.g. from multiple samples from
the same experiment. It assesses the overlap between samples and
outputs a count for each merged interval corresponding to the number
of samples that a particular interval was found in.

Example
-------

For example if the command::

    cgat bed2counts a.bed b.bed c.bed > output.tsv

is run, where a.bed-c.bed look like::

                     1         2         3         4
           012345678901234567890123456789012345678901234
    a.bed: -------          -----               -------
    b.bed:      -----        --
    c.bed:  ---

    Union: ----------       -----               -------

Then output.tsv will look like::

    contig	start	end	count
    chr1	0	7	3
    chr1	17	22	2
    chr1	37	44	1

Options
-------

The only option other than the standard cgat options is -i, --bed-file this
allows the input files to be provided as a comma seperated list to the option
rather than a space delimited set of positional arguements. It is present
purely for galaxy compatibility.

Usage
-----

    cgat beds2counts BED [BED ...] [OPTIONS]

Command line options
--------------------

optional arguments:
  -h, --help            show this help message and exit
  --version             show program's version number and exit
  --bed-file bed        supply list of bed files (default: [])

Script timing options:
  --timeit TIMEIT_FILE  store timeing information in file. (default: None)
  --timeit-name TIMEIT_NAME
                        name in timing file for this class of jobs (default:
                        all)
  --timeit-header       add header for timing information. (default: None)

Common options:
  --random-seed RANDOM_SEED
                        random seed to initialize number generator with
                        (default: None)
  -v LOGLEVEL, --verbose LOGLEVEL
                        loglevel. The higher, the more output. (default: 1)
  --log-config-filename LOG_CONFIG_FILENAME
                        Configuration file for logger. (default: logging.yml)
  --tracing {function}  enable function tracing. (default: None)
  -? ?                  output short help (command line options only.
                        (default: None)

Input/output options:
  -I STDIN, --stdin STDIN
                        file to read stdin from. (default: <_io.TextIOWrapper
                        name='<stdin>' mode='r' encoding='UTF-8'>)
  -L STDLOG, --log STDLOG
                        file with logging information. (default:
                        <_io.TextIOWrapper name='<stdout>' mode='w'
                        encoding='UTF-8'>)
  -E STDERR, --error STDERR
                        file with error information. (default:
                        <_io.TextIOWrapper name='<stderr>' mode='w'
                        encoding='UTF-8'>)
  -S STDOUT, --stdout STDOUT
                        file where output is to go. (default:
                        <_io.TextIOWrapper name='<stdout>' mode='w'
                        encoding='UTF-8'>)







            

          

      

      

    

  

  
    
    

    bed2fasta.py - get sequences from bed file
    

    

    

    
 
  

    
      
          
            
  
bed2fasta.py - get sequences from bed file


	Tags

	Genomics Intervals Sequences Conversion BED FASTA






Purpose

This script outputs nucleotide sequences for intervals within
a bed formatted file using a corresponding genome file.



Usage

A required input to bed2fasta.py is a cgat indexed genome. To obtain an
idexed human reference genome we would type


	Example::
	cat hg19.fasta | index_fasta.py hg19 > hg19.log





This file would then serve as the –genome-file when we wish to extract
sequences from a bed formatted file.

For example we could now type:

cat in.bed | python bed2fasta.py --genome-file hg19 > out.fasta





Where we take a set of genomic intervals (e.g. from a human ChIP-seq experiment)
and output their respective nucleotide sequences.

Type:

python bed2fasta.py --help





for command line help.



Command line options



usage: bed2fasta [-h] [-g GENOME_FILE] [-m {dust,dustmasker,softmask,none}]
                 [--output-mode {intervals,leftright,segments}]
                 [--min-sequence-length MIN_LENGTH]
                 [--max-sequence-length MAX_LENGTH]
                 [--extend-at {none,3,5,both,3only,5only}]
                 [--extend-by EXTEND_BY] [--use-strand] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2stats.py - summary of bed file contents
    

    

    

    
 
  

    
      
          
            
  
bed2stats.py - summary of bed file contents


	Tags

	Genomics Intervals Summary BED






Purpose

This script takes a bed-formatted file as input and outputs the number
of intervals and bases in the bed file. Counts can be subdivided by setting
the --aggregate-by command line option:


	contig
	output counts per contig (column 1)



	name
	output counts grouped by the name field in the bed formatted
file (column 4)



	track
	output counts per track in the bed formatted file.





Note that a count of bases usually makes only sense if the intervals
submitted are non-overlapping.

If the option –add-percent is given, an additional column will output
the percent of the genome covered by intervals. This requires a
–genome-file to be given as well.



Usage

To count the number of intervals, type:

cgat bed2table < in.bed













	track

	ncontigs

	nintervals

	nbases



	all

	23

	556

	27800






To count per contig:

cgat bed2table --aggregate=contig < in.bed













	track

	ncontigs

	nintervals

	nbases



	chrX

	1

	11

	550



	chr13

	1

	12

	600



	chr12

	1

	37

	1850



	…

	…

	…

	…






Type:

cgat bed2table --help





for command line help.



Command line options



usage: bed2stats [-h] [-g GENOME_FILE] [-a {name,contig,track,none}] [-p]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2stats: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    beds2beds.py - decompose bed files
    

    

    

    
 
  

    
      
          
            
  
beds2beds.py - decompose bed files


	Tags

	Genomics Intervals BED Manipulation






Purpose

This script will decompose a collection of input bedfiles into a
collection of unions or intersections.



Options

Files are collected by a regular expression pattern given to the option
--pattern-identifier.

The script behaviour is determined by the --method option with either of
the following choices:


	merged-combinations
	merge intervals across bed files and only report those
that appear in every file.



	unmerged-combinations
	for each bed file, report intervals that overlap with intervals
in every other bed file.





If the --exclusive-overlap option is set, report exclusive
overlap. Only intervals will be reported that overlap in a pairwise
comparison but do not overlap with intervals in any of the other sets.

This script requires bed files indexed by tabix [http://samtools.sourceforge.net/tabix.shtml/].



Usage

For example, you have ChIP-Seq data for PolII and two transcription
factors tf1 and tf2. The following statement will output four
bed files:

zcat polii.bed.gz | head

chr17    1    100    8    1
chr19   -50    50    6    1
chr19    0    100    1    1
chr19    50   150    1    1
chr19   150   200    2    1
chr19   201   300    3    1

python beds2beds.py polii.bed.gz tf1.bed.gz tf2.bed.gz

zcat tf1.bed.gz | head

chr1    35736     40736    ENST000004173240    -
chr1    60881     65881    ENST000005349900    +
chr1    64090     69090    ENST000003351370    +
chr1    362658    367658   ENST000004264060    +
chr1    622034    627034   ENST000003328310    -
chr1    716405    721405   ENST000003585330    +





The four files contain intervals, that


	have PolII and tf1 present,


	have PolII and tf2 present,


	have tf1 and tf2 present, or


	have PolII and tf1 and tf2 present.




If the –exclusive-overlap option is set, three sets will be output
with intervals that


	have PolII and tf1 present but no tf2,


	have PolII and tf2 present but no tf1,


	have tf1 and tf2 present but no PolII.




Type:

python beds2beds.py --help





for command line help.



Command line options



usage: beds2beds [-h] [--version] [-e] [-p PATTERN_ID]
                 [-m {merged-combinations,unmerged-combinations}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
beds2beds: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    combine_tables.py - join tables
    

    

    

    
 
  

    
      
          
            
  
combine_tables.py - join tables


	Tags

	Python






Purpose

This script reads several tab-separated tables and joins them into a
single one.


Todo


	Rename to tables2table.py


	Use pandas dataframes for fast IO and merging/joining








Usage

The option --header-names sets the column titles explicitely. Add
--skip-titles if you want to avoid echoing the original title in
the input files.

Example:

python combine_tables.py --help





Type:

python combine_tables.py --help





for command line help.



Command line options



usage: combine-tables [-h] [--version] [-t] [--ignore-titles] [-i]
                      [-m MISSING_VALUE] [--header-names HEADERS] [-c COLUMNS]
                      [-k TAKE] [-g GLOB] [-s SORT] [-e] [-a CAT]
                      [--sort-keys {numeric,alphabetic}] [--keep-empty]
                      [--ignore-empty] [--add-file-prefix] [--use-file-prefix]
                      [--prefixes PREFIXES] [--regex-filename REGEX_FILENAME]
                      [--regex-start REGEX_START] [--regex-end REGEX_END]
                      [--test TEST] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
combine-tables: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_chains.py - compare to chain formatted files
    

    

    

    
 
  

    
      
          
            
  
diff_chains.py - compare to chain formatted files


	Tags

	Genomics GenomeAlignment CHAIN Comparison






Purpose

Compare two genomic alignment files and calculate statistics from the
comparison.



Documentation

Operates on two chain [https://genome.ucsc.edu/goldenPath/help/chain.html] formatted
files.

Outputs a table with the following columns:







	Column

	Content



	contig1

	contig name



	contig2

	contig name



	strand

	strand



	mapped1

	mapped residues



	identical1

	identically mapped residues



	different1

	differently mapped residues



	unique1

	residues mapped only from set1



	pmapped1

	percentage of mapped residues



	pidentical1

	percentage of identically
mapped residues



	pdifferent1

	percentage of differently
mapped residues






Similar columns exist for data set 2



Usage

Example:

cgat diff_chains.py hg19ToMm10v1.chain.over.gz hg19ToMm10v2.chain.over.gz





This will compare the locations that regions within the genome hg19
map to between two different mappings to the genome mm10.

Type:

python diff_chains.py --help





for command line help.



Command line options



usage: diff-chains [-h] [--version] [-m] [-a] [-u] [-r RESTRICT]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
diff-chains: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2variants.py - create sequence variants from a set of sequences
    

    

    

    
 
  

    
      
          
            
  
fasta2variants.py - create sequence variants from a set of sequences


	Tags

	Genomics Sequences Variants Protein FASTA Transformation






Purpose

This script reads a collection of sequences in fasta format
and outputs a table of possible variants. It outputs for each position
in a protein sequence the number of variants.

If the input sequences are nucleotide coding (CDS) sequences, for each
variant a weight is output indicating the number of times that variant
can occur from single nucleotide changes.



Usage

Example:

python fasta2variants.py -I CCDS_nucleotide.current.fna.gz -L CDS.log -S CDS.output -c





This will take a CDS file as input, save the log and output files, and
count variants based on single nucleotide changes using the -c option.

Type:

python fasta2variants.py --help





for command line help.

Compressed (.gz) and various fasta format files (.fasta, .fna) are
accepted. If the -c option is specified and the file is not a CDS
sequence the script will throw an error (‘length of sequence
‘<input_file>’ is not a multiple of 3’).



Command line options



usage: fasta2variants [-h] [--version] [-c] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
fasta2variants: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2fastq.py - manipulate fastq files
    

    

    

    
 
  

    
      
          
            
  
fastq2fastq.py - manipulate fastq files


	Tags

	Genomics NGS Sequences FASTQ Manipulation






Purpose

This script performs manipulations on fastq formatted
files. For example it can be used to change the quality score format
or sample a subset of reads.

The script predominantly is used for manipulation of single fastq
files. However, for some of its functionality it will take paired data
using the --pair-fastq-file and --output-filename-pattern options.
This applies to the sample and sort methods.



Usage


	Example::
	In this example we randomly sample 50% of reads from paired data provided in
two fastq files.


head in.fastq.1

@SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
=@A@9@BAB@;@BABA?=;@@BB<A@9@;@2>@;??
@SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCACCCCCCCC
+SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
=B@9@0>A<B=B=AAA?;*(@A>(@<=*9=9@BA>7
@SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
AGTGAGCAGGGAAACAATGTCTGTCTAAGAATTTGA

head in.fastq.2

+SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
<?@BA?;A=@BA>;@@7###################
@SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
ATTAGTATTATCCATTTATATAATCAATAAAAATGT
+SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
?ABBA2CCBBB2?=BB@C>=AAC@A=CBB#######
@SRR111956.5 HWUSI-EAS618:7:1:39:1305 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+SRR111956.5 HWUSI-EAS618:7:1:39:1305 length=36
AA>5;A>*91?=AAA@@BBA<B=?ABA>2>?A<BB@


	command-line::
	
	cat in.fastq.1 | python fastq2fastq.py
	–method=sample –sample-size 0.5
–pair-fastq-file in.fastq.2
–output-filename-pattern out.fastq.2
> out.fastq.1









head out.fastq.1
@SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+
=@A@9@BAB@;@BABA?=;@@BB<A@9@;@2>@;??
@SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCACCCCCCCC
+
=B@9@0>A<B=B=AAA?;*(@A>(@<=*9=9@BA>7
@SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
AGTGAGCAGGGAAACAATGTCTGTCTAAGAATTTGA
+
<?@BA?;A=@BA>;@@7###################
@SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
ATTAGTATTATCCATTTATATAATCAATAAAAATGT
+
?ABBA2CCBBB2?=BB@C>=AAC@A=CBB#######










Options

The following methods are implemented (--method).

change-format



change the quality format to new format given as
target-format. Options are sanger,




solexa, phred64, integer and illumina-1.8




sample


Sub-sample a fastq file. The size of the sample is set by
–sample-size




unique


Remove duplicate reads based on read name




trim3



Trim a fixed number of nucleotides from the 3’ end of reads.
(see --num-bases). Note that there are better tools for




trimming.




trim5



Trim a fixed number of nucleotides from the 5’ end of reads.
(see --num-bases). Note that there are better tools for




trimming.




sort


Sort the fastq file by read name.




renumber-reads


Rename the reads based on pattern given in --pattern-identifier
e.g. --pattern-identifier="read_%010i"




Type:

python fastq2fastq.py --help





for command line help.



Command line options



usage: fastq2fastq [-h] [--version] [-i INPUT_FASTQ_FILE]
                   [--output-removed-tsv OUTPUT_REMOVED_TSV]
                   [--output-stats-tsv OUTPUT_STATS_TSV]
                   [--output-removed-fastq OUTPUT_REMOVED_FASTQ]
                   [-m {filter-N,filter-identifier,filter-ONT,offset-quality,apply,change-format,renumber-reads,sample,sort,trim3,trim5,unique,reverse-complement,grep}]
                   [--set-prefix SET_PREFIX]
                   [--input-filter-tsv INPUT_FILTER_TSV]
                   [--min-average-quality MIN_AVERAGE_QUALITY]
                   [--min-sequence-length MIN_SEQUENCE_LENGTH]
                   [--quality-offset QUALITY_OFFSET]
                   [--target-format {sanger,solexa,phred64,integer,illumina-1.8}]
                   [--guess-format {sanger,solexa,phred64,integer,illumina-1.8}]
                   [--sample-size SAMPLE_SIZE] [--pair-fastq-file PAIR]
                   [--map-tsv-file MAP_TSV_FILE] [--num-bases NBASES]
                   [--seed SEED] [--pattern-identifier RENUMBER_PATTERN]
                   [--grep-pattern GREP_PATTERN] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                   [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
fastq2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2table.py - compute stats on reads in fastq files
    

    

    

    
 
  

    
      
          
            
  
fastq2table.py - compute stats on reads in fastq files


	Tags

	Genomics NGS Sequences FASTQ Annotation






Purpose

This script iterates over a fastq file and outputs
summary statistics for each read.

The output is a tab-delimited text file with the following columns:







	Column

	Content



	read

	read identifier present in input fastq
file



	nfailed

	number of reads that fall below Q10



	nN

	number of ambiguous base calls (N)



	nval

	number of bases in the read



	min

	minimum base quality score for the read



	max

	maximum base quality for the read



	mean

	mean base quality for the read



	median

	median base quality for the read



	stddev

	standard devitation of quality scores
for the read



	sum

	sum of quality scores for the read



	q1

	25th percentile of quality scores for
the read



	q3

	25th percentile of quality scores for
the read








Usage

Example:

cgat fastq2table --guess-format=sanger < in.fastq > out.tsv





In this example we know that our data have quality scores formatted as
sanger. Given that illumina-1.8 quality scores are highly overlapping
with sanger, this option defaults to sanger qualities. In default mode
the script may not be able to distinguish highly overlapping sets of
quality scores.

If we provide two reads to the script:

@DHKW5DQ1:308:D28FGACXX:5:2211:8051:4398
ACAATGTCCTGATGTGAATGCCCCTACTATTCAGATCGCTTAGGGCATGC
+
B1=?DFDDHHFFHIJJIJGGIJGFIEE9CHIIFEGGIIJGIGIGIIDGHI
@DHKW5DQ1:308:D28FGACXX:5:1315:15039:83265
GAATGCCCCTACTATTCAGATCGCTTAGGGCATGCGTCGCATGTGAGTAA
+
@@@FDFFFHGHHHJIIIJIGHIJJIGHGHC9FBFBGHIIEGHIGC>F@FA





we get the following table as output:

















	read

	nfailed

	nN

	nval

	min

	max

	mean

	median

	stddev

	sum

	q1

	q3



	DHKW5DQ1:308:D28FGACXX:5:2211:8051:4398

	0

	0

	50

	16.0000

	41.0000

	37.2000

	38.0000

	4.4900

	1860.0000

	36.0000

	40.0000



	DHKW5DQ1:308:D28FGACXX:5:1315:15039:83265

	0

	0

	50

	24.0000

	41.0000

	37.0200

	38.0000

	3.5916

	1851.0000

	36.0000

	40.0000






Type:

cgat fastq2table --help





for command line help.



Command line options



usage: fastq2table [-h] [--version]
                   [--guess-format {sanger,solexa,phred64,illumina-1.8,integer}]
                   [--target-format {sanger,solexa,phred64,illumina-1.8,integer}]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
fastq2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    genome_bed.py - Create a bed file tiling a genome from a fai file
    

    

    

    
 
  

    
      
          
            
  
genome_bed.py - Create a bed file tiling a genome from a fai file


	Tags

	Python





This program takes an indexed genome and creates windows of a certain
size.

It also takes two input parameters: the window/tile size (bases) and
the shift size.  By default the shift size is equal to the window
size.  The default window size is 1000.


Usage


python genome_bed -g <genome.fai> -o <output.bed> -w window size -s shift size






Command line options



usage: genome-bed [-h] [--version] [-g GENOME_FILE] [-w WINDOW] [-s SHIFT]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
genome-bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    index2bed.py - convert indexed fasta file to bed file
    

    

    

    
 
  

    
      
          
            
  
index2bed.py - convert indexed fasta file to bed file


	Tags

	Python






Purpose



Usage

Type:

python <script_name>.py --help





for command line help.



Command line options



usage: index2bed [-h] [--version] [-g GENOME_FILE]
                 [--remove-regex REMOVE_REGEX] [-e GFF_FILE]
                 [-f FIXED_WIDTH_WINDOWS] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
index2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    medip_merge_intervals.py - merge differentially methylated regions
    

    

    

    
 
  

    
      
          
            
  
medip_merge_intervals.py - merge differentially methylated regions


	Tags

	Python






Purpose

This script takes the output of DESeq or EdgeR and merges
adjacent intervals that show a similar expression change.

Input is data like this:

contig start end treatment_name  treatment_mean  treatment_std   control_name    control_mean    control_std     pvalue  qvalue  l2fold  fold    significant     status
chr1 10000 11000        CD14    32.9785173324   0       CD4     41.7117152603   0       0.199805206526  1.0     0.338926100945  1.26481475319   0       OK
chr1 14000 15000        CD14    9.32978709019   0       CD4     9.31489982941   0       1.0     1.0     -0.00230390372974       0.998404330063  0       OK
chr1 15000 16000        CD14    9.04603350905   0       CD4     9.01484414416   0       1.0     1.0     -0.00498279072069       0.996552150193  0       OK
chr1 16000 17000        CD14    0.457565479197  0       CD4     0.14910378845   0       0.677265200643  1.0     -1.61766129852  0.325863281276  0       OK





The second and third window would be merged, as


	Their methylation levels are within 10% of each other.


	They are both not differentially methylated.




It aggregates the following:


	mean values: average


	std values: max


	pvalue: max


	qvalue: max


	fold: min/max (depending on enrichment/depletion)


	l2fold: min/max (depending on enrichment/depletion)




The analysis outputs bed files with intervals that are
potentially activated in one of the conditions. Windows
with a positive fold change are collected in the treatment,
while windows with a negative fold change are collected in the
control.

For methylation analysis, it might be more interesting
to report windows that are depleted (instead of enriched)
of signal. Thus, if the option --invert is given,
windows with a negative l2fold change are labeled treatment.
Less methylation means that this region is “active” in the
treatment condition.

Note that the input is assumed to be sorted by coordinate.



Usage

Example:

python cgat_script_template.py --help





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: medip-merge-intervals [-h] [--version] [-o MIN_OVERLAP]
                             [-w PATTERN_WINDOW] [-i] [--timeit TIMEIT_FILE]
                             [--timeit-name TIMEIT_NAME] [--timeit-header]
                             [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                             [--log-config-filename LOG_CONFIG_FILENAME]
                             [--tracing {function}] [-? ?]
                             [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                             [-L STDLOG] [-E STDERR] [-S STDOUT]
medip-merge-intervals: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_rebuild_extensions.py - rebuild all cython extensions
    

    

    

    
 
  

    
      
          
            
  
cgat_rebuild_extensions.py - rebuild all cython extensions


	Tags

	Python






Purpose

This script rebuilds all cython extensions in the source directory.

Some scripts in the repository make use of pyximport to compile
associated cython scripts with embedded C code. Theses scripts are
automatically re-compiled if the script has changed, but this process
can fail if:



	the script is executed on a machine without a C-compiler


	some underlying libraries have changed.







Thus, it is safer to rebuild all scripts on a machine with a C compiler
before running a script in production on a cluster, where not all nodes
might be fully configured for compilation.



Usage

Example:

python cgat_rebuild_extensions.py





Type:

python cgat_rebuild_extensions.py --help





for command line help.



Command line options



usage: cgat-rebuild-extensions [-h] [-i TEST_OPTION] [--timeit TIMEIT_FILE]
                               [--timeit-name TIMEIT_NAME] [--timeit-header]
                               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                               [--log-config-filename LOG_CONFIG_FILENAME]
                               [--tracing {function}] [-? ?] [-I STDIN]
                               [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-rebuild-extensions: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    vcf2vcf.py - manipulate vcf files
    

    

    

    
 
  

    
      
          
            
  
vcf2vcf.py - manipulate vcf files


Purpose

Manipulate vcf-formatted files.



Usage

Type:

python vcf2vcf.py --help





for command line usage.


	
This script provides the following methods:

	




	
re-order

	reorder sample columns in vcf formatted file according to a given sort order






	
cgat.tools.vcf2vcf.Documentation()

	




	
-------------

	




	
This is a tool for manipulating vcf-formatted files.  The following

	




	
options are available:

	




	
+-----------+-------------------------+

	




	
+-----------+-------------------------+

	




	
lift-over

	




	
^^^^^^^^^

	




	
Command line options

	




	
--------------------

	





usage: vcf2vcf [-h] [--version] [--input-filename-fasta INPUT_FILENAME_FASTA]
               [--input-filename-bam INPUT_FILENAME_BAM]
               [--method {add-strelka-genotype,lift-over}]
               [--input-filename-chain INPUT_FILENAME_CHAIN]
               [--normal-sample-regex NORMAL_SAMPLE_REGEX]
               [--output-filename-unmapped OUTPUT_FILENAME_UNMAPPED]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN] [-F]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
vcf2vcf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    vcfstats_sqlite.py - reformat output of vcf-stats for database loading
    

    

    

    
 
  

    
      
          
            
  
vcfstats_sqlite.py - reformat output of vcf-stats for database loading


	Tags

	Python






Purpose

create a csv separated file for loading into a database from
output of vcf-stats utility in vcf-tools package.



Usage

Example:

python vcfstats_sqlite.py [files] > [outfile]





Type:

python vcfstats_sqlite.py --help





for command line help.



Command line options



usage: vcfstats2db [-h] [--version] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
vcfstats2db: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_bam.py - compute coverage correlation between bam files
    

    

    

    
 
  

    
      
          
            
  
bam_vs_bam.py - compute coverage correlation between bam files


	Tags

	Genomics NGS BAM Comparison






Purpose

Compare per base coverage between two bam formatted files.



Usage

Example:

python bam_vs_bam.py in1.bam in2.bam





This command generates a tab delimited output with columns chromosome,
base coordinate, number of overlapping reads in in1.bam, and number of
overlapping reads in in2.bam.

Type:

python bam_vs_bam.py --help





for command line help.



Documentation

This tools allows users to compare the per base coverage between
two BAM files. The output includes all bases in the supplied reference
fasta except those with no coverage in the input BAMs.

At present the –interval or -i option has not been implemented.



Command line options


	--regex-identifier
	supply a regex to extract an identifier from the filenames.
defualts to using the filename







usage: bam-vs-bam [-h] [--version] [-i FILENAME_INTERVALS]
                  [-e REGEX_IDENTIFIER] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
bam-vs-bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_bed.py - count context that reads map to
    

    

    

    
 
  

    
      
          
            
  
bam_vs_bed.py - count context that reads map to


	Tags

	Genomics NGS Intervals BAM BED Counting






Purpose

This script takes as input a BAM file from an RNA-seq or
similar experiment and a bed formatted file. The bed
formatted file needs at least four columns. The fourth (name) column
is used to group counts.

The script counts the number of alignments overlapping in the first
input file that overlap each feature in the second file. Annotations
in the bed file can be overlapping - they are counted
independently.

Note that duplicate intervals will be counted multiple times. This
situation can easily arise when building a set of genomic annotations
based on a geneset with alternative transcripts. For example:

chr1     10000     20000     protein_coding            # gene1, transrcipt1
chr1     10000     20000     protein_coding            # gene1, transcript2





Any reads overlapping the interval chr1:10000-20000 will be counted
twice into the protein_coding bin by bedtools. To avoid this, remove any
duplicates from the bed file:

zcat input_with_duplicates.bed.gz | cgat bed2bed --merge-by-name | bgzip > input_without_duplicates.bed.gz





This scripts requires bedtools [http://bedtools.readthedocs.org/en/latest/] to be installed.



Options


	-a, –bam-file / -b, –bed-file
	These are the input files. They can also be provided as provided as
positional arguements, with the bam file being first and the (gziped
or uncompressed) bed file coming second






	-m, --min-overlap

	Using this option will only count reads if they overlap with a bed entry
by a certain minimum fraction of the read.





Example

Example:

python bam_vs_bed.py in.bam in.bed.gz







Usage

Type:

cgat bam_vs_bed BAM BED [OPTIONS]
cgat bam_vs_bed --bam-file=BAM --bed-file=BED [OPTIONS]





where BAM is either a bam or bed file and BED is a bed file.

Type:

cgat bam_vs_bed --help





for command line help.



Command line options



usage: bam-vs-bed [-h] [--version] [-m MIN_OVERLAP] [-a bam] [-b bed] [-s]
                  [--assume-sorted] [--split-intervals] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
bam-vs-bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_gtf.py - compare bam file against gene set
    

    

    

    
 
  

    
      
          
            
  
bam_vs_gtf.py - compare bam file against gene set


	Tags

	Genomics NGS Genesets BAM GTF Summary






Purpose

Compare RNASeq reads in a BAM file and compares it against reference exons to quantify exon overrun / underrun.



Documentation


	This script is for validation purposes:
	
	Exon overrun should be minimal - reads should not extend beyond known exons.


	Spliced reads should link known exons.






	Please note:
	
	For unspliced reads, any bases extending beyond exon boundaries are counted.


	
	For spliced reads, both parts of the reads are examined for their overlap.
	As a consequence, counts are doubled for spliced reads.







	The script requires a list of non-overlapping exons as input.


	For read counts to be correct the NH (number of hits) flag needs to be set correctly.










Usage

Example:

# Preview the BAM file using Samtools view
samtools view tests/bam_vs_gtf.py/small.bam | head
# Pipe input bam to script and specify gtf file as argument
cat tests/bam_vs_gtf.py/small.bam | cgat bam_vs_gtf.py --gtf-file=tests/bam_vs_gtf.py/hg19.chr19.gtf.gz











	category

	counts





	spliced_bothoverlap

	0



	unspliced_overlap

	0



	unspliced_nooverrun

	0



	unspliced

	207



	unspliced_nooverlap

	207



	spliced_overrun

	0



	spliced_halfoverlap

	0



	spliced_exact

	0



	spliced_inexact

	0



	unspliced_overrun

	0



	spliced

	18



	spliced_underrun

	0



	mapped

	225



	unmapped

	0



	input

	225



	spliced_nooverlap

	18



	spliced_ignored

	0






Type:

python bam_vs_gtf.py --help





for command line help.



Command line options

filename-exons / filename-gtf: a gtf formatted file containing the
genomic coordinates of a set of non-overlapping exons, such as from a
reference genome annotation database (Ensembl, UCSC etc.).



usage: bam-vs-gtf [-h] [--version] [-e gtf] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                  [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam-vs-gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_bam.py - compare multiple bam files against each other
    

    

    

    
 
  

    
      
          
            
  
diff_bam.py - compare multiple bam files against each other


	Tags

	Genomics NGS BAM Comparison






Purpose

Compare reads in multiple BAM files against each other.


Note

BAM files need to be sorted by read name. samtools sort does NOT
work as it uses a custom comparison function (strnum_cmp) that is
incompatible with the standard lexicographical order in
python. See the example below on how to get sorted files.



This script is for validation purposes. It might take a while
for large BAM files.



Usage

If you have two sorted sam or bam formatted
files, type:

cgat diff_bam a.bam b.bam > out





If they are not sorted, you can use samtools sort to do an
inplace sort:

cgat diff_bam <(samtools view -h a.bam | hsort 0 -k1,1)
               <(samtools view -h b.bam | hsort 0 -k1,1)





The samtools -h option outputs the header, and the hsort command
sorts without disturbing the header.

An example output looks like this:












	read

	nlocations

	nmatched

	file1_nh

	file2_nh

	file1_loc

	file2_loc



	42YKVAAXX_HWI-EAS229_1:1:11:1659:174

	1

	2

	2

	2

	0,0

	0,0



	42YKVAAXX_HWI-EAS229_1:1:11:166:1768

	1

	2

	1

	1

	0

	0



	612UOAAXX_HWI-EAS229_1:1:97:147:1248

	2

	2

	2

	2

	0,1

	0,1






This reports for each read the number of locations that the read maps to
in all files, the number of files that have matches found for the read.
Then, for each file, it reports the number of matches and the locations
it maps to (coded as integers, 0 the first location, 1 the second, …).

In the example above, the first read maps twice to 1 location in both
files.  This is a read occuring twice in the input file. The second
read maps to the same one location in both files, while the third read
maps to the two same locations in both input files.

Type:

python diff_bam.py --help





for command line help.



Documentation

For read counts to be correct the NH flag to be set correctly.



Command line options



usage: diff-bam [-h] [--version] [--header-names HEADERS]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
diff-bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2fasta.py - operate on sequences
    

    

    

    
 
  

    
      
          
            
  
fasta2fasta.py - operate on sequences


	Tags

	Sequences






Purpose

perform operations (masking, renaming) on a stream of fasta formatted sequences.

Available edit operations are:


	translate
	translate sequences using the standard genetic code.



	translate-to-stop
	translate until first stop codon



	truncate-at-stop
	truncate sequence at first stop codon



	back-translate
	convert nucleotide sequence to peptide sequence
Requires parameter of second fasta file with peptide sequences.



	mark-codons
	adds a space after each codon



	apply-map
	rename sequence identifiers from a given map Requires parameter
with filename of a map. The map is a tab-separated file mapping old
to new names.



	build-map
	rename sequence identifiers numerically and save output in a
tab-separated file.  Requires parameter with filename of a map. The
map is a tab-separated file mapping new to old names and will be
newly created. Any exiting file of the same name will be
overwritten.



	pseudo-codons
	translate, but keep register with codons



	interleaved-codons
	mix amino acids and codons



	filter
	remove sequence according to certain criteria. For example,
–method=filter –filter-method=min-length=5  –filter-method=max-length=10





map-codons:


	remove-gaps
	remove all gaps in the sequence



	mask-stops
	mask all stop codons



	mask-seg
	mask sequence by running seg



	mask-bias
	mask sequence by running bias



	mask-codons
	mask codon sequence given a masked amino acid sequence.
Requires parameter with masked amino acids in fasta format.



	mask-incomplete-codons
	mask codons that are partially masked or gapped



	mask-soft
	combine hard-masked (NNN) sequences with unmasked sequences to generate
soft masked sequence (masked regions in lower case)



	remove-stops
	remove stop codons



	upper
	convert sequence to upper case



	lower
	convert sequence to lower case



	reverse-complement
	build the reverse complement



	shuffle
	shuffle each sequence



	sample
	select a certain proportion of sequences





Parameters are given to the option parameters in a comma-separated
list in the order that the edit operations are called upon.

Exclusion/inclusion is tested before applying any id mapping.



Usage

Example:

python fasta2fasta.py --method=translate < in.fasta > out.fasta





Type:

python fasta2fasta.py --help





for command line help.



Command line options



usage: fasta2fasta [-h] [--version]
                   [-m {translate,translate-to-stop,truncate-at-stop,back-translate,mark-codons,apply-map,build-map,pseudo-codons,filter,interleaved-codons,map-codons,remove-gaps,mask-seg,mask-bias,mask-codons,mask-incomplete-codons,mask-stops,mask-soft,map-identifier,nop,remove-stops,upper,lower,reverse-complement,sample,shuffle}]
                   [-p PARAMETERS] [-x]
                   [--sample-proportion SAMPLE_PROPORTION]
                   [--exclude-pattern EXCLUDE_PATTERN]
                   [--include-pattern INCLUDE_PATTERN]
                   [--filter-method FILTER_METHODS] [-t {aa,na}]
                   [-l TEMPLATE_IDENTIFIER] [--map-tsv-file MAP_TSV_FILE]
                   [--fold-width FOLD_WIDTH] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
fasta2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2kmercontent.py
    

    

    

    
 
  

    
      
          
            
  
fasta2kmercontent.py


	Tags

	Genomics Sequences FASTA Summary






Purpose

This script takes an input fasta file from stdin and computes a
k-nucleotide content for each contig in the file. The output is a
tab-delimited file of kmer counts:

     contig1  contig2  contig3  contig4
n1
n2
n3





where n is the kmer and contig is the fasta entry.

The user specifies the kmer length that is to be searched. Note that the longer
the kmer, the longer the script will take to run.

Note the order of output will not necessarily be the same order as the input.



Usage

Example:

zcat in.fasta.gz | head::

 >NODE_1_length_120_cov_4.233333
 TCACGAGCACCGCTATTATCAGCAACTTTTAAGCGACTTTCTTGTTGAATCATTTCAATT
 GTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCTACAAGACGGAAG
 CGTTTTGTAGCTGAAAGTGGGCGAGTTTCCATGATACGAAcgatATCGCC

 >NODE_3_length_51_cov_33.000000
 CGAGTTTCCATGATACGAAcgatATCGCCTTCTTTAGCAACGTTGTTTTCGTCATGTGCT
 TTATATTTTTTAGAATAGTTGATACGTTTACCATAGACTGG

zcat in.fasta.gz | python fasta2kmercontent.py
                   --kmer-size 4
                   > tetranucleotide_counts.tsv

head tetranucleotide_counts.tsv::

  kmer NODE_228_length_74_cov_506.432434 NODE_167_length_57_cov_138.438599
  GTAC 0                                 0
  TGCT 0                                 0
  GTAA 2                                 0
  CGAA 1                                 1
  AAAT 1                                 0
  CGAC 0                                 0





In this example, for each contig in in.fasta.gz the occurrence of each four
nucleotide combination is counted.

Alternative example:

zcat in.fasta.gz | python fasta2kmercontent.py
                   --kmer-size 4
                   --output-proportion
                   > tetranucleotide_proportions.tsv





In this example, for each contig in in.fasta.gz we return the proportion of
each four base combination out of the total tetranucleotide occurences.
--output-proportion overides the count output.



Options

Two options control the behaviour of fasta2kmercontent.py; --kmer-size and
--output-proportion.


	--kmer-size::
	The kmer length to count over in the input fasta file



	--output-proportion::
	The output values are proportions rather than absolute counts





Type:

python fasta2composition.py --help





for command line help.



Command line options



usage: fasta2kmercontent [-h] [--version] [-k KMER] [-p]
                         [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                         [--timeit-header] [--random-seed RANDOM_SEED]
                         [-v LOGLEVEL]
                         [--log-config-filename LOG_CONFIG_FILENAME]
                         [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                         [-E STDERR] [-S STDOUT]
fasta2kmercontent: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastas2fasta.py - concatenate sequences from multiple fasta files
    

    

    

    
 
  

    
      
          
            
  
fastas2fasta.py - concatenate sequences from multiple fasta files


	Tags

	Genomics Sequences MultipleAlignments FASTA Manipulation






Purpose

This script reads sequences from two or more fasta formatted
files and outputs a new file with the sequences concatenated per
entry.

All files must have the same number of sequences and the id of
the first file is output.



Usage

Example:

python fastas2fasta.py a.fasta b.fasta > c.fasta





If a.fasta is:

>1
AAACC
>2
CCCAA





and b.fasta is:

>a
GGGGTTT
>b
TTTTGGG





then the output will be:

>1
AAACCGGGGTTT
>2
CCCAATTTTGGG





Type:

python fastas2fasta.py --help





for command line help.



Command line options



usage: fastas2fasta [-h] [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastas2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fasta.py - interleave two fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fasta.py - interleave two fastq files


	Tags

	Genomics NGS FASTQ FASTA Conversion






Purpose

This script is used to interleave two fastq-formatted files
(paired data) into a single fasta-formatted file. Read1 is
followed by read2 in the resultant file.

fastq files MUST be sorted by read identifier.



Usage

For example:

cgat fastqs2fasta          --first-fastq-file=in.fastq.1.gz          --second-fastq-file=in.fastq.2.gz > out.fasta





If in.fastq.1.gz looks like this:

@r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/1
TTCTTGTTGAATCATTTCAATTGTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCT
+
??A???ABBDDBDDEDGGFGAFHHCHHIIIDIHGIFIH=HFICIHDHIHIFIFIIIIIIHFHIFHIHHHH
@r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/1
ATGAACGCGGCCGAGCAACACCGCCACCACGTGAATCGGTGGTTCTACGACTGCCCGTCGGCCTTCCACC
+





and in.fastq.2.gz looks like this:

A??A?B??BDBDDDBDGGFA>CFCFIIIIIIF;HFIGHCIGHIHHEHHHIIHHFDHH-HD-IDHHHGIHG
@r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/2
ACCTTCGTTTCCAAGGTGCAGCAGGTCAACTTGATCAAACTGCCCCTTTGAACGAAGTGAAAAAACAAAT
+
A????@BBDBDDADABGFGFFEHHHIEHHII@IIHIHHIDHCCIHIIIHHIEI5HIHFHIEHIH=CHHC)
@r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/2
GGGAGCCTGCAGCGCCGCCGCGACTGCATCGCCGCGGCCGGCATCGTGGGATGGACGGTGCGTCAGACGC
+
???A?9BBDDD5@DDDGFFGFFHIIIHHIHBFHIIHIIHHH>HEIHHFI>FFHGIIHHHDHCCFIHFIHD





then the output will be:

>r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/1
TTCTTGTTGAATCATTTCAATTGTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCT
>r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/2
ACCTTCGTTTCCAAGGTGCAGCAGGTCAACTTGATCAAACTGCCCCTTTGAACGAAGTGAAAAAACAAAT
>r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/1
ATGAACGCGGCCGAGCAACACCGCCACCACGTGAATCGGTGGTTCTACGACTGCCCGTCGGCCTTCCACC
>r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/2
GGGAGCCTGCAGCGCCGCCGCGACTGCATCGCCGCGGCCGGCATCGTGGGATGGACGGTGCGTCAGACGC
>r4_from_gi|53711291|ref|NC_006347.1|_Bacteroides_fragilis_#0/1
GAGGGATCAGCCTGTTATCCCCGGAGTACCTTTTATCCTTTGAGcgatGTCCCTTCCATACGGAAACACC
>r4_from_gi|53711291|ref|NC_006347.1|_Bacteroides_fragilis_#0/2
CAACCGTGAGCTCAGTGAAATTGTAGTATCGGTGAAGATGCcgatTACCCGcgatGGGACGAAAAGACCC
>r5_from_gi|325297172|ref|NC_015164.1|_Bacteroides_salanitr_#0/1
TGCGGCGAAATACCAGCCCATGCCCCGTCCCCAGAATTCCTTGGAGCAGCCTTTGTGAGGTTCGGCTTTG
>r5_from_gi|325297172|ref|NC_015164.1|_Bacteroides_salanitr_#0/2
AACGGCACGCACAATGCCGACCGCTACAAAAAGGCTGCCGACTGGCTCCGCAATTACCTGGTGAACGACT





Type:

cgat fastqs2fasta --help





for command line help.



Command line options



usage: fastqs2fasta [-h] [--version] [-a FASTQ1] [-b FASTQ2]
                    [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastqs2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fastqs.py - manipulate (merge/reconcile) fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fastqs.py - manipulate (merge/reconcile) fastq files


	Tags

	Genomics NGS FASTQ FASTQ Manipulation






Purpose

This script manipulates multiple fastq files and outputs
new fastq files. Currently only the method reconcile
is implemented.


reconcile

Reconcile reads from a pair of fastq files.

This method takes two fastq files and outputs two fastq files such
that all reads in the output are present in both output files.

The typical use case is that two fastq files containing the first and
second part of a read pair have been independently filtered, for
example by quality scores, truncation, etc. As a consequence some
reads might be missing from one file but not the other. The reconcile
method will output two files containing only reads that are common to
both files.

The two files must be sorted by read identifier.

Example input, read2 and read3 are only present in either of the
files:


# File1        # File 2

@read1         @read1
AAA            AAA
+              +
!!!            !!!
@read2         @read3
CCC            TTT
+              +
!!!            !!!
@read4         @read4
GGG            GGG
+              +
!!!            !!!




Example output, only the reads common to both files are output:

# File1        # File 2

@read1         @read1
AAA            AAA
+              +
!!!            !!!
@read4         @read4
GGG            GGG
+              +
!!!            !!!








Usage

Example:

python fastqs2fastqs.py             --method=reconcile             --output-filename-pattern=myReads_reconciled.%s.fastq             myReads.1.fastq.gz myReads.2.fastq.gz





In this example we take a pair of fastq files, reconcile by read
identifier and output 2 new fastq files named
myReads_reconciled.1.fastq.gz and
myReads_reconciled.2.fastq.gz.

Type:

python fastqs2fastqs.py --help





for command line help.



Command line options



usage: fastqs2fastqs [-h] [--version] [-m {reconcile,filter-by-sequence}] [-c]
                     [-u] [--id-pattern-1 ID_PATTERN_1]
                     [--id-pattern-2 ID_PATTERN_2]
                     [--input-filename-fasta INPUT_FILENAME_FASTA]
                     [--filtering-kmer-size FILTERING_KMER_SIZE]
                     [--filtering-min-kmer-matches FILTERING_MIN_KMER_MATCHES]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
fastqs2fastqs: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtf2tsv.py - convert gtf file to a tab-separated table
    

    

    

    
 
  

    
      
          
            
  
gtf2tsv.py - convert gtf file to a tab-separated table


	Tags

	Genomics Genesets






Purpose

convert a gtf formatted file to tab-separated table. The difference to
a plain gtf formatted file is that column headers are added,
which can be useful when importing the gene models into a database.

Note that coordinates are converted to 0-based open/closed notation (all on
the forward strand).

By default, the gene_id and transcript_id are extracted from the
attributes field into separated columns.  If
-f/--attributes-as-columns is set, all fields in the attributes
will be split into separate columns.

The script also implements the reverse operation, converting a tab-separated
table into a gtf formatted file.

When using the -m, --map option, the script will output a table
mapping gene identifiers to transcripts or peptides.

USING GFF3 FILE:
The script also can convert gff3 formatted files to tsv files when
specifiying the option –is-gff3 and –attributes-as-columns. Currently only
the full GFF3 to task is implimented. Further improvements to this script can
be made to only output the attributes only, i.e. –output-only-attributes.



Usage

Example:

cgat gtf2tsv < in.gtf




















	contig

	source

	feature

	start

	end

	score

	strand

	frame

	gene_id

	transcript_id

	attributes



	chr19

	processed_transcript

	exon

	66345

	66509

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “1”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00001701708”



	chr19

	processed_transcript

	exon

	60520

	60747

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “2”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00002735807”



	chr19

	processed_transcript

	exon

	60104

	60162

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “3”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00002846866”






To build a map between gene and transcrip identiers, type:

cgat gtf2tsv --output-map=transcript2gene < in.gtf











	transcript_id

	gene_id



	ENST00000269812

	ENSG00000141934



	ENST00000318050

	ENSG00000176695



	ENST00000327790

	ENSG00000141934






To run the script to convert a gff3 formatted file to tsv, type:

cat file.gff3.gz | cgat gtf3tsv --is-gff3 --attributes-as-columns
> outfile.tsv





Type:

cgat gtf2tsv --help





for command line help.



Command line options



usage: gtf2tsv [-h] [--version] [-o] [-f] [--is-gff3] [-i]
               [-m {transcript2gene,peptide2gene,peptide2transcript}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2tsv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtfs2tsv.py - compare two genesets
    

    

    

    
 
  

    
      
          
            
  
gtfs2tsv.py - compare two genesets


	Tags

	Python






Purpose

This script compares two genesets (required) in gtf-formatted
files and output lists of shared and unique genes.

It outputs the results of the comparison into various sections. The
sections are split into separate output files whose names are
determined by the --output-filename-pattern option. The sections
are:


	genes_ovl
	Table with overlapping genes



	genes_total
	Summary statistic of overlapping genes



	genes_uniq1
	List of genes unique in set 1



	genes_uniq2
	List of genes unique in set 2







Options


	--output-filename-pattern
	This option defines how the output filenames are determined for the
sections described in the Purpose section above.







Usage

Example:

head a.gtf::

  19 processed_transcript exon 66346 66509 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "1"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00001701708";

  19 processed_transcript exon 60521 60747 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "2"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002735807";

  19 processed_transcript exon 60105 60162 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "3"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002846866";

head b.gtf::

  19 transcribed_processed_pseudogene exon 66320 66492 . - .
  gene_id "ENSG00000225373"; transcript_id "ENST00000587045"; exon_number "1";
  gene_name "AC008993.5"; gene_biotype "pseudogene";
  transcript_name "AC008993.5-001"; exon_id "ENSE00002739353";

  19 lincRNA exon 68403 69146 . + . gene_id "ENSG00000267111";
  transcript_id "ENST00000589495"; exon_number "1"; gene_name "AC008993.2";
  gene_biotype "lincRNA"; transcript_name "AC008993.2-001";
  exon_id "ENSE00002777656";

  19 lincRNA exon 71161 71646 . + . gene_id "ENSG00000267588";
  transcript_id "ENST00000590978"; exon_number "1"; gene_name "MIR1302-2";
  gene_biotype "lincRNA"; transcript_name "MIR1302-2-001";
  exon_id "ENSE00002870487";

python gtfs2tsv.py a.gtf b.gtf > out.tsv

head out.tsv::

  contigs source feature start end score strand frame gene_id transcript_id attributes
  19 processed_transcript exon 66345 66509 . - . ENSG00000225373 ENST00000592209 exon_number "1";
  gene_name "AC008993.5"; gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00001701708"
  19 processed_transcript exon 60520 60747 . - . ENSG00000225373 ENST00000592209 exon_number "2";
  gene_name "AC008993.5"; gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002735807"





Type:

python gtfs2tsv.py --help





for command line help.



Command line options



usage: gtfs2tsv [-h] [--version] [-e] [-f] [-p] [-s] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gtfs2tsv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates
    

    

    

    
 
  

    
      
          
            
  
rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates


	Tags

	Genomics NGS Genesets






Purpose

This script takes as input a BAM file resulting from reads mapped against
a junction database and outputs a bam formatted file in genomic
coordinates.

The contigs should be of the format
<chromosome>|<start>|<exon-end>-<exon-start>|<end>|<splice>|<strand>.

<start> - 0-based coordinate of first base
<exon-end> - 0-based coordinate of last base in exon
<exon-start> - 0-based coordinate of first base in exon
<end> - 0-based coordinate of base after last base

Strand can be either fwd or rev, though sequences in the database
and coordinates are all on the forward strand.

For example chr1|1244933|1244982-1245060|1245110|GTAG|fwd translates to the
intron chr1:1244983-1245060 in python coordinates.

The input bam-file is supposed to be sorted by read. Only the best
matches are output for each read, were best is defined both in terms
of number of mismatches and number of colour mismatches.



Usage

Example:

cat input.bam | python rnaseq_junction_bam2bam.py - --log=log > output.bam





Type:

python rnaseq_junction_bam2bam.py --help





for command line help.



Command line options



usage: rnaseq-junction-bam2bam [-h] [--version] [-t FILENAME_GENOME_BAM]
                               [-s FILENAME_CONTIGS] [-o] [-i]
                               [-c REMOVE_CONTIGS] [-f] [-u]
                               [--timeit TIMEIT_FILE]
                               [--timeit-name TIMEIT_NAME] [--timeit-header]
                               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                               [--log-config-filename LOG_CONFIG_FILENAME]
                               [--tracing {function}] [-? ?] [-I STDIN]
                               [-L STDLOG] [-E STDERR] [-S STDOUT]
rnaseq-junction-bam2bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    split_gff - split a gff file into chunks
    

    

    

    
 
  

    
      
          
            
  
split_gff - split a gff file into chunks


	Tags

	Genomics Intervals Genesets GFF Manipulation






Purpose

Split gff file into chunks. Overlapping entries will always be output
in the same chunk. Input is read from stdin unless otherwise
specified. The input needs to be contig/start position sorted.



Options

-i –min-chunk-size


This option specifies how big each chunck should
be, in terms of the number of gff lines to be
included. Because overlapping lines are always
output to the same file, this should be considered
a minimum size.





	-n, --dry-run

	This options tells the script not to actaully write
any files, but it will output a list of the files
that would be output.





Example

cgat splitgff -i 1 < in.gff

where in.gff looks like:


chr1        .       exon    1       10      .       +       .
chr1        .       exon    8       100     .       +       .
chr1        .       exon    102     150     .       +       .




will produce two files that look like:


000001.chunk:
chr1        .       exon    1       10      .       +       .
chr1        .       exon    8       100     .       +       .

000002.chunk:
chr1        .       exon    102     150     .       +       .






Usage


cgat splitgff [OPTIONS]




Will read a gff file from stdin and split into multiple gff files.


cgat split_gff -I GFF [OPTIONS]




Will read the gff file GFF and split into multiple gff files.



Command line options



usage: split-gff [-h] [-i MIN_CHUNK_SIZE] [-n]
                 [--output-filename-name OUTPUT_FILENAME_NAME]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
split-gff: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bams2bam.py - merge genomic and transcriptome mapped bamfiles
    

    

    

    
 
  

    
      
          
            
  
bams2bam.py - merge genomic and transcriptome mapped bamfiles


	Tags

	Genomics NGS Geneset BAM Manipulation






Purpose

This script takes as input two BAM files from an RNASeq experiment.
The first bam file (bamG) should contain reads mapped against
the genome using a mapper permitting splicing (e.g. tophat). The
second bam file (bamT) should contain reads mapped against
known transcripts. This script will write a new bam file that removes
reads from bamG that map to regions that are conflicting with
those in bamT.


Note

Note that if junctions are supplied, the resultant bam files will not
be sorted by position.




	bamG
	bam formatted file with reads mapped against the genome



	bamT
	bam formatted file with reads mapped against transcripts







Usage

Example:

python bams2bam.py bamT.bam bamG.bam





Type:

python bams2bam.py --help





for command line help.



Documentation

The script needs to look-up reads via their names. It thus builds an
index of reads mapping

This script requires the NM attributes to be set. If it is not set,
you will need to set a policy.



Command line options



Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 132, in main
    module.main(sys.argv)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/bams2bam.py", line 79, in main
    usage=globals()["__doc__"])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgatcore/experiment.py", line 510, in __init__
    **kwargs)
TypeError: __init__() got an unexpected keyword argument 'version'







            

          

      

      

    

  

  
    
    

    bed.plot.py - create genomic snapshots using the IGV Viewer
    

    

    

    
 
  

    
      
          
            
  
bed.plot.py - create genomic snapshots using the IGV Viewer


	Tags

	Python






Purpose

Create genomic plots in a set of intervals using
the IGV snapshot mechanism.

The script can use a running instance of IGV identified
by host and port. Alternatively, it can start IGV and load
a pre-built session.



Usage

Example:

python bed2plot.py < in.bed





Type:

python script_template.py --help





for command line help.



Command line options



usage: bed2plot [-h] [-s SESSION] [-d SNAPSHOTDIR] [-f {png,eps,svg}]
                [-o HOST] [-p PORT] [-e EXTEND] [-x EXPAND] [--session-only]
                [-n {bed-name,increment}] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bed2plot: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat2dot.py - create a graph between cgat scripts
    

    

    

    
 
  

    
      
          
            
  
cgat2dot.py - create a graph between cgat scripts


	Tags

	Python






Purpose

This script creates an rdf description of a cgat script.

Optionally, the script outputs also a galaxy xml description of the
scripts’ interface.



Usage

Example:

python cgat2dot.py scripts/*.py





Type:

python cgat2dot.py --help





for command line help.



Documentation



Command line options



usage: cgat2dot [-h] [-f {rdf,galaxy}] [-l FILENAME_LIST] [-s SRC_DIR]
                [-r INPUT_REGEX] [-p OUTPUT_PATTERN] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
cgat2dot: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_get_options.py - build a sorted list of all options used in scripts
    

    

    

    
 
  

    
      
          
            
  
cgat_get_options.py - build a sorted list of all options used in scripts


	Author

	


	Tags

	Python






Purpose

Go through all scripts in the cgat code collection and collect
options used in the scripts.

This script expects to be executed at the root of the
cgat code repository.



Usage

Example:

python cgat_get_options.py





Type:

python cgat_get_options.py --help





for command line help.



Command line options



usage: cgat-get-options [-h] [--inplace] [--options-tsv-file TSV_FILE]
                        [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                        [--timeit-header] [--random-seed RANDOM_SEED]
                        [-v LOGLEVEL]
                        [--log-config-filename LOG_CONFIG_FILENAME]
                        [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                        [-E STDERR] [-S STDOUT]
cgat-get-options: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code
    

    

    

    
 
  

    
      
          
            
  
cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code


	Author

	


	Tags

	Python






Purpose

This script runs pep8.py on the cgat code collection and outputs
summary statistics of code quality onto stdout.



Usage

To use, simply run the script from the root directory of the
cgat code collection:

python cgat_pep8_check_code_quality.py





Type:

python cgat_pep8_check_code_quality.py --help





for command line help.



Command line options



usage: cgat-pep8-code-quality [-h] [--timeit TIMEIT_FILE]
                              [--timeit-name TIMEIT_NAME] [--timeit-header]
                              [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                              [--log-config-filename LOG_CONFIG_FILENAME]
                              [--tracing {function}] [-? ?] [-I STDIN]
                              [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-pep8-code-quality: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_select.py - select rows from a table
    

    

    

    
 
  

    
      
          
            
  
csv_select.py - select rows from a table


	Tags

	Python






Purpose

extract rows from a csv-formatted table.

The select statement is a one-line, for example:

csv_select.py "int(r['mC-foetal-sal-R4']) > 0" < in > out





Note the required variable name r for denoting field names. Please
also be aware than numeric values need to be converted first before
testing.



Usage

Type:

python csv_select.py --help





for command line help.



Command line options



usage: csv-select [-h] [-r] [-u] [-l] [-f FILENAME_FIELDS]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
                  [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-select: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2summary.py - compute summary stats for a fastq file
    

    

    

    
 
  

    
      
          
            
  
fastq2summary.py - compute summary stats for a fastq file


	Tags

	Genomics NGS Sequences FASTQ Annotation






Purpose

This script iterates over a fastq file and outputs
summary statistics for the complete file

The output is a tab-delimited text file with the some of following columns
depending on the option specified:







	Column

	Content



	reads

	total reads in file



	bases

	total bases in file



	mean_length

	mean read length



	median_length

	median read length



	mean_quality

	mean read quality



	median_quality

	median read quality



	nfailed

	number of bases below quality threshold








Usage

Example:

python fastq2summary.py --guess-format=sanger < in.fastq > out.tsv





In this example we know that our data have quality scores formatted as
sanger. Given that illumina-1.8 quality scores are highly overlapping
with sanger, this option defaults to sanger qualities. In default mode
the script may not be able to distinguish highly overlapping sets of
quality scores.

Type:

python fastq2summary.py --help





for command line help.



Command line options



usage: fastq2summary [-h]
                     [--guess-format {sanger,solexa,phred64,illumina-1.8,integer}]
                     [-f {sanger,solexa,phred64,illumina-1.8,integer}]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
fastq2summary: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fastq.py - merge reads in fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fastq.py - merge reads in fastq files


	Tags

	Genomics NGS FASTQ FASTQ Manipulation






Purpose

This script takes two paired-ended fastq files and outputs a single
fastq file in which reads have merged.

The two files must be sorted by read identifier.

Note that this script is currently a proof-of-principle implementation
and has not been optimized for speed or functionality.



Usage

Example:

python fastqs2fastq.py myReads.1.fastq.gz myReads.2.fastq.gz
       --method=join
       > join.fastq





In this example we take a pair of fastq files, join the reads and save
the output in join.fastq.

Type:

python fastqs2fastq.py --help





for command line help.



Command line options



usage: fastqs2fastq [-h] [-m {join}] [--timeit TIMEIT_FILE]
                    [--timeit-name TIMEIT_NAME] [--timeit-header]
                    [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                    [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastqs2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff32gtf.py - various methods for converting gff3 files to gtf
    

    

    

    
 
  

    
      
          
            
  
gff32gtf.py - various methods for converting gff3 files to gtf


	Tags

	Python






Purpose

Provide a range of methods for converting GFF3 formated files to valid GTF
format files.



Background

While the various flavours of GFF format are supposedly backward
compatible, this is broken by GTF2.2 and GFF3. GTF requires the
presence of gene_id and transcript_id fields for each record. This not
so for GFF3. Further key,value tags in the attributes fields of GTF
are ” ” delimited, but are “=” delimited in GFF.

Conversion is non-trivial. GFF3 records are hierachical. To find the
gene_id and transcript_id one must traverse the hierarchy to the
correct point. Futher records can have multiple parents.


-> Exon





	While the standard structure is Gene -> mRNA -|       ,
	-> CDS





this is not manditory, and it is possible the conversion will want to
be done in a different way.



Usage

Example:

python gff32gtf.py --method=[METHOD] [options]





Their are several ways in which the conversion can be done:


hierachical

By default this script will read in the entire GFF3 file, and then for
each entry traverse the hierarchy until an object of type GENE_TYPE
(“gene” by default”) or an object with no parent is found. This
becomes the “gene_id”. Any object of TRANSCRIPT_TYPE encountered on
the way is set as the transcript_id. If not such object is encountered
then the object directly below the gene object is used as the
trancript_id. Objects that belong to multipe transcripts or genes are
duplicated.

This method requires ID and Parent fields to be present.

Because this method reads the whole file in, it uses the most memory, although
see –read-twice and –by-chrom for tricks that might help.



set-field

The gene_id and transcript_id fields are set to the  value of a provided field.
Records that don’t have these fields are discarded. By default:

transcript_id=ID
gene_id=Parent



set-pattern

As above, but the fieldnames are set by a string format involving the
fields of the record.



set-none

transcript_id and gene_id are set to None.




Command line options



usage: gff32gtf [-h] [-m {hierarchy,set-field,set-pattern,set-none}]
                [-g GENE_TYPE] [-t TRANSCRIPT_TYPE] [-d]
                [--gene-id GENE_FIELD_OR_PATTERN]
                [--transcript-id TRANSCRIPT_FIELD_OR_PATTERN]
                [--parent-field PARENT] [--read-twice] [--by-chrom]
                [--fail-missing-gene] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
gff32gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    script_template.py
    

    

    

    
 
  

    
      
          
            
  
script_template.py


	Tags

	Python






Purpose

Convert the output of a metaphlan analysis to a preferred table format



Usage

Example:

python metaphlan2table.py --help





Type:

python metaphlan2table.py --help





for command line help.



Documentation



Code



usage: metaphlan2table [-h] [--version] [-t {read_map,rel_ab}]
                       [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                       [--timeit-header] [--random-seed RANDOM_SEED]
                       [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                       [-E STDERR] [-S STDOUT]
metaphlan2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    split_fasta.py
    

    

    

    
 
  

    
      
          
            
  
split_fasta.py


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python split_fasta.py --help





Type:

python split_fasta.py --help





for command line help.



Command line options



usage: split-fasta [-h] [--version] [-f INPUT_FILENAME] [-i INPUT_PATTERN]
                   [-o OUTPUT_PATTERN] [-n NUM_SEQUENCES] [-m MAP_FILENAME]
                   [-s] [--min-size MIN_SIZE] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
split-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    transfac2transfac.py - filter transfac motif files
    

    

    

    
 
  

    
      
          
            
  
transfac2transfac.py - filter transfac motif files


	Tags

	Python






Purpose

Filter a transfac motif file.



Usage

Example:

python cgat_script_template.py





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: transfac2transfac [-h] [-f FILTER_PREFIX] [-p FILTER_PATTERN]
                         [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                         [--timeit-header] [--random-seed RANDOM_SEED]
                         [-v LOGLEVEL]
                         [--log-config-filename LOG_CONFIG_FILENAME]
                         [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                         [-E STDERR] [-S STDOUT]
transfac2transfac: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    wig2bed.py - convert densities to intervals
    

    

    

    
 
  

    
      
          
            
  
wig2bed.py - convert densities to intervals


Purpose

define intervals based on densities within a bigwig file.

The script currently implements the following methods (--method):


	threshold
	output windows that contain values above a certain
threshold.



	std-above-mean
	output windows that are a certain number of standard
deviations above the mean.



	multiple-of-mean
	output windows that are a certain times above the mean.







Usage

Bigwig files need to be supplied by the –bigwig-file options.

For example:

python wig2bed.py --threshold=10 --method=threshold --genome-file=mm10 --bigwig-file=in.bw > out.bed







Command line options



usage: wig2bed [-h] [-m {threshold,stddev-above-mean,multiple-of-mean}]
               [-g GENOME_FILE] [-t THRESHOLD] [-i bigwig]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
wig2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    Modules
    

    

    

    
 
  

    
      
          
            
  
Modules

This section documents the modules used in CGAT scripts.


CGAT generic toolboxes

These are the modules that every script or module should use.






Genomics


File formats

Modules for parsing and working for data in specific formats.



	AGP.py - working with AGP files

	Bed.py - Tools for working with bed files

	Blat.py - tools for working with PSL formatted files and data

	CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

	FastaIterator.py - Iteration over fasta files

	Fastq.py - methods for dealing with fastq files

	GFF3 - Classes, functions and iterators for working with GFF3 files

	GTF.py - Classes and methods for dealing with GTF/GFF formatted files

	IndexedFasta.py - fast random access in fasta files

	IndexedGenome.py - Random access to interval lists

	Sra.py - Methods for dealing with short read archive files

	VCF.py - Tools for working with VCF files







Algorithms



	AString.py - strings as arrays of characters

	Genomics.py - Tools for working with genomic data

	Intervals.py - Utility functions for working with intervals

	Motifs.py -

	SequencePairProperties.py - Computing metrics for aligned sequences

	SequenceProperties.py - Computing metrics of nucleotide sequences

	Variants.py -







Wrappers

These modules wrap tools and provide routines for parsing their
output.



	WrapperCodeML.py -

	IGV.py - Simple wrapper to the IGV socket interface

	Masker.py - Wrapper for sequence masking tools








Data processing


Math and Stats



	Histogram.py - Various functions to deal with histograms

	Histogram2D.py - functions for handling two-dimensional histograms.

	Stats.py - statistical utility functions

	MatrixTools.py -







Toolboxes

Toolboxes for generic problems.



	Iterators.py - Iterator functions

	SetTools.py - Tools for working on sets

	Tree.py - A phylogenetic tree

	TreeTools.py - Tools for working with trees








CGAT infrastructure

Below is a list of modules that are involved in maintainig the
CGAT infrastructure such as logging, dependency tracking, etc.





Other



	RLE.py - a simple run length encoder

	SVGdraw.py - generate SVG drawings

	RateEstimation.py - utilities for computing rate estimates for codon models.







Unsorted

Modules not sorted into categories.









            

          

      

      

    

  

  
    
    

    AGP.py - working with AGP files
    

    

    

    
 
  

    
      
          
            
  
AGP.py - working with AGP files

This module contains a parser for reading from agp formatted
files.


Code


	
class AGP.AGP

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Parser for AGP formatted files.


	
readFromFile(infile)

	read an agp file.

Example line:

scaffold_1      1       1199    1       W       contig_13       1       1199    +





This method converts coordinates to zero-based coordinates
using open/closed notation.

In AGP nomenclature
(http://www.ncbi.nlm.nih.gov/genome/guide/Assembly/AGP_Specification.html)
objects (obj) like scaffolds are assembled from components
(com) like contigs.

Component types are:


	W
	WGS sequence



	N
	gap of specified length.










	
mapLocation(id, start, end)

	map a genomic location.


	Raises

	KeyError – If id is not present.

















            

          

      

      

    

  

  
    
    

    Bed.py - Tools for working with bed files
    

    

    

    
 
  

    
      
          
            
  
Bed.py - Tools for working with bed files

This module contains methods for working with bed
formatted files.


Note

Another way to access the information in bed formatted
files is through pysam [https://github.com/pysam-developers/pysam].



The principal class is Bed to represent bed formatted
entries.  The method iterate() iterates over a bed file and is
aware of UCSC track information that might be embedded in the
file. Additional functions can process intervals (merge(),
binIntervals(), setName(), etc).

The method readAndIndex() can build an in-memory index of a bed-file
for quick cross-referencing.


Reference


	
class Bed.Bed

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an interval in bed format.

Coordinates are represented as 0-based, half-open intervals.

Fields in the record can be accessed as attributes or through
a dictionary type access:

print b.contig()
print b["contig"]





Bed-formatted records can have a variable number of columuns
with a minimum of 3. Accessing an optional attribute that is not present
will raise an IndexError.


	
contig

	Chromosome/contig.


	Type

	string










	
start

	Start position of the interval.


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
end

	End position of the interval.


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
name

	Name of the interval (optional).


	Type

	string










	
score

	Score associated with interval (optional).


	Type

	float [https://docs.python.org/2.7/library/functions.html#float]










	
strand

	Strand of the interval (optional).


	Type

	char










	
thickStart

	




	
thickEnd

	




	
itemRGB

	




	
blockCount

	Number of blocks for bed intervals spanning multiple blocks (BED12).


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
blockSizes

	Comma-separated list of sizes of the blocks (BED12).


	Type

	string










	
blockStarts

	Comma-separated list of start positions of the blocks (BED12).


	Type

	string










	
copy()

	Returns a new bed object that is a copy of this one






	
fromGTF(gff, is_gtf=False, name=None)

	fill fields from gtf formatted entry


	Parameters

	
	gff (a gff entry.) – The object should contain the fields contig,
start and end in 0-based, half-open coordinates.


	name (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If given, attempt to set the name atttribute of the interval
by this attribute of the gff object such as gene_id or
transcript_id.













	
toIntervals()

	return intervals for BED12 entries.

If the entry is not BED12, the whole region will be returned.


	Returns

	intervals – A list of tuples (start,end) with the block coordinates in
the Bed entry.



	Return type

	list










	
fromIntervals(intervals)

	Fill co-ordinates from list of intervals.

If multiple intervals are provided and entry is BED12 then the
blocks are automatically set.


	Parameters

	intervals (list) – List of tuples (start, end) with block coordinates.










	
property columns

	return number of columns in bed-entry.










	
class Bed.Track(line)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Bed track information.






	
Bed.iterator(infile)

	iterate over a bed formatted file.

Comments and empty lines are ignored. The iterator is
track aware and will set the track attribute for the
Bed objects it yields.


	Parameters

	infile (File) – 



	Yields

	bed – Bed object










	
Bed.bed_iterator(infile)

	Deprecated, use iterator().






	
Bed.setName(iterator)

	yield bed entries in which name is set to the record number if
unset.


	Yields

	bed – Bed object










	
Bed.grouped_iterator(iterator)

	yield bed results grouped by track.

Note that the iterator supplied needs to be sorted by the track
attribute. This is usually the case in bed formatted
files.


	Yields

	bed – Bed object










	
Bed.blocked_iterator(iterator)

	yield blocked bed results.

Intervals with the same name are merged into a single entry. This
method can be used to convert BED6 formatted entries to
BED12. Note that the input iterator needs to be sorted by bed
name.


	Yields

	bed – Bed object










	
Bed.readAndIndex(infile, with_values=False, per_track=False)

	read and index a bed formatted file in infile.

The index is not strand-aware.


	Parameters

	
	infile (File) – File object to read from.


	with_values (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, store the actual bed entry. Otherwise, just the
intervals are recorded and any additional fields will be ignored.


	per_track (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True build indices per track.






	Returns

	index – A dictionary of nested containment lists (NCL). Each
key is a contig. If per_track is set, the dictionary has an
additional first level for the track.



	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
Bed.binIntervals(iterator, num_bins=5, method='equal-bases', bin_edges=None)

	merge adjacent intervals by the score attribute.

This method takes all the intervals in the collection builds a histogram
of all the scores in the collection. The partition into the bins can use
one of the following merging methods:


	equal-bases
	merge intervals such that each bin contains the equal number of bases



	equal-intervals
	merge intervals such that each bin contains the equal number intervals





This method requires the fifth field (score) of the bed input file
to be present.


	Parameters

	
	iterator – Iterator yielding bed intervals


	num_bins (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of bins to create in the histogram


	method (string) – Binning method


	bin_edges (list) – List of bin edges. These take precedence over method.






	Returns

	
	intervals (list) – list of intervals (Bed)


	bin_edges (list) – list of bin edges















	
Bed.merge(iterator)

	merge overlapping intervals and returns a list of merged intervals.






	
Bed.getNumColumns(filename)

	return number of fields in bed-file by looking at the first
entry.


	Returns

	ncolumns – The number of columns. If the file is empty, 0 is returned.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    Blat.py - tools for working with PSL formatted files and data
    

    

    

    
 
  

    
      
          
            
  
Blat.py - tools for working with PSL formatted files and data

This module provides a class to parse PSL formatted
files such as those output by the BLAT tool.

This module defines the Blat.Match class representing a
single entry and a series of iterators to iterate of PSL
formatted files (iterator(), iterator_target_overlap(),
…).


Reference


	
exception Blat.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception Blat.ParsingError(message, line=None)

	Bases: Blat.Error

Exception raised for errors while parsing


	
message -- explanation of the error

	








	
class Blat.Match

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a psl formatted alignment.

Block coordinates are on the forward strand for target and on
the forward/reverse strand for the query depending on the strand.

The fields mQueryFrom/To and mSbjctFrom/To are always on the forward
strand.


	
convertCoordinates()

	convert coordinates.

This rescales the block positions so that they start at 0 and converts
the query to forward and the sbjct to forward/reverse coordinates.

About the psl psl format from the manual at
http://genome.ucsc.edu/google/goldenPath/help/pslSpec.html


	::
	In general the coordinates in psl files are “zero based
half open.” The first base in a sequence is numbered zero
rather than one.  When representing a range the end
coordinate is not included in the range. Thus the first 100
bases of a sequence are represented as 0-100, and the
second 100 bases are represented as 100-200.

There is a another little unusual feature in the .psl
format. It has to do with how coordinates are handled on
the negative strand.  In the qStart/qEnd fields the
coordinates are where it matches from the point of view of
the forward strand (even when the match is on the reverse
strand). However on the qStarts[] list, the coordinates are
reversed.





This class works in forward coordinates for the query and
forward/reverse coordinates for the sbjct.


	For a negative strand match, the following is done:
	
	invert mSbjctFrom and mSbjctTo with mSbjctLength


	add block sizes to mQueryStarts and mSbjctStarts


	invert mQueryStarts and mSbjctStarts


	reverse blocksize, mQueryStarts and mSbjctStarts













	
switchTargetStrand()

	switch the target strand.

Use in cases in which a feature has been defined on the
negative target strand with reverse coordinates. The result
will be the same alignment using forward coordinates on the
target.

This method will also update the query strand and coordinates.






	
fromMaq(maq)

	build BLAT entry from a MAQ match.

see Maq.Match.






	
getBlocks()

	return a list of aligned blocks.






	
getMapQuery2Target()

	return a map between query to target.

If the strand is “-”, the coordinates for query are on
the negative strand.






	
getMapTarget2Query()

	return a map between target to query.

If the strand is “-”, the coordinates for query are on
the negative strand.






	
fromMap(map_query2target, use_strand=None)

	return a map between query to target.






	
fromPair(query_start, query_size, query_strand, query_seq, target_start, target_size, target_strand, target_seq)

	fill from two aligned sequences.

Note that sequences are case-sensitive.










	
class Blat.MatchPSLX

	Bases: Blat.Match


	
fromPSL(other, query_sequence, sbjct_sequence)

	fill entry from a psl match.

sequences are on forward strand starting at
query_from and sbjct_from, respectively.










	
Blat.iterator2(infile)

	iterate over the contents of a psl file.






	
Blat.iterator(infile)

	iterate over the contents of a psl file.






	
Blat.iterator_pslx(infile)

	iterate over the contents of a pslx file.






	
Blat.iterator_target_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.






	
Blat.iterator_query_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.






	
Blat.iterator_test(infile, report_step=100000)

	only output parseable lines from infile.






	
Blat.iterator_per_query(iterator_psl)

	iterate over the contents of a psl file per query






	
Blat.addAlignments(matches, shift=0, by_query=False)

	building a genome to query alignment for all matches

The genome alignment is shifted by shift.






	
Blat.getComponents(matches, max_distance=0, min_overlap=0, by_query=False)

	return overlapping matches.


	max_distance
	allow reads to be joined if they are # residues apart.
Adjacent reads are 1 residue apart, overlapping reads are 0 residues
apart



	min_overlap
	require at least # residues to be overlapping













            

          

      

      

    

  

  
    
    

    CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice
    

    

    

    
 
  

    
      
          
            
  
CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

The Sloan Kettering cBioPortal webservice provides access to a
database of results of genomics experiments on various cancers. The
database is organised into studies, each study contains a number of
case lists, where each list contains the ids of a set of patients, and
genetic profiles, each of which represents an assay conducted on the
patients in the case list as part of the study.

The main class here is the CBioPortal class representing a connection
to the cBioPortal Database. Query’s are represented as methods of the
class. Study ids or names or case lists can be provided to the
constructor to the object, via the setDefaultStudy and
setDefaultCaseList methods or to the indevidual query methods. Where
ever possible the validity of parameters is checked before the query
is executed.

Whenever a query requires a genetic profile id or a list of such ids,
but none are given, the list of all profiles for which the
show_in_analysis flag is set will be used.

All of the commands provided in the webservice are implemented here
and as far as possible the name, syntax and paramter names of the
query are identical to the raw commands to the webservice. These
queries are:


	getCancerStudies,


	getCaseLists,


	getProfileData,


	getMutationData,


	getClinicalData,


	getProteinArrayInfo,


	getProteinArrayData,


	getLink,


	getOncoprintHTML.




In addition two new queries are implememented that are not part of the
webservice:


	getPercentAltered and


	getTotalAltered




These emulate the function of the website where the percent of cases
that show any alteration for the gene and profiles given are returned
(getPercentAltered, or the percent of cases that show an alteration in
any of the genes (getTotalAltered) is returned.

examples:

gene_list = [ "TP53",
"BCL2",
"MYC"  ]
portal = CBioPortal()
portal.setDefaultStudy(study = "prad_mskcc")
portal.setDefaultCaseList(case_set_id = "prad_all_complete")
portal.getPercentAltered(gene_list = gene_list)





or more tersely:

portal.CBioProtal()
portal.getPercentAltered(study = "prad_mskcc", case_set_id = "prad_all_complete",
                         gene_list = ["TP53","BCL2","MYC"],
                         genetic_profile_id =["prad_mskcc_mrna"])





Any warnings returned by the query are stored in CBioPortal.last_warnings.

Query’s that would give too long an URL are split into smaller querys
and the results combined transparently.

A commandline interface is provided for convenience, syntax:

python CBioPortal.py [options] command(s)






Reference


	
class CBioPortal.CBioPortal(url=None, study=None, study_name=None, case_list_id=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

connect to the cBioPortal Database.

If no url is specified the default url is used. A list of of valid
study ids is retrieved from the database. This both confirms that
the datavase is reachable, and provides cached checking for the
ids provided. If a study or study name is provided then this is
set as the defualt study for this session and the details of the
availible profiles and cases is retrieved.  ‘Study’ is the study
id. If both study and study_name are specified then the study id
is used.


	
getCancerStudies()

	Fetches the list of cancer studies currently in the database.

Returns list of dictionaries with three entries
‘cancer_study_id’,’name’ and ‘description’.  Also caches this
data to verify the validity of later calls






	
getGeneticProfiles(study=None, study_name=None)

	Fetches the valid genetic profiles for a particular study.

study is the study id.  If both study and study_name are
specified, study is used. If neither study nor study name is
specified then the default study is used if set, if not a
value error is raised.
Returns a list of dictionaries






	
getCaseLists(study=None, study_name=None)

	Retrieves meta-data regarding all case lists stored about a
specific cancer study.

For example, a within a particular study, only some cases may
have sequence data, and another subset of cases may have been
sequenced and treated with a specific therapeutic
protocol. Multiple case lists may be associated with each
cancer study, and this method enables you to retrieve
meta-data regarding all of these case lists.

Data is returned as a list of dictionaries with the following
entries:



	case_list_id: a unique ID used to identify the case list ID
in subsequent interface calls. This is a human readable
ID. For example, “gbm_all” identifies all cases profiles in
the TCGA GBM study.


	case_list_name: short name for the case list.


	case_list_description: short description of the case list.


	cancer_study_id: cancer study ID tied to this genetic
profile. Will match the input cancer_study_id.


	case_ids: space delimited list of all case IDs that make up
this case list.












	
getProfileData(gene_list, case_set_id=None, genetic_profile_id=None, study=None, study_name=None)

	Retrieves genomic profile data for one or more genes.

You can specify one gene and many profiles or one profile and
many genes.  If you specify no genetic profiles then all
genetic profiles for the specified or default study are used
if the case_set_id is from that study otherwise a ValueError
is raised.

Return value depends on the parameters. If you specify a
single genetic profile and multiple genes a list of ordered
dictionaries with the following entries:

gene_id: Entrez Gene ID
common: HUGO Gene Symbol
entries 3 - N: Data for each case





If you specify multi genetic profiles and a single gene, a
list of ordered dictoraries with the following entries is
returned:

genetic_profile_id: The Genetic Profile ID.
alteration_type: The Genetic Alteration Type, e.g. MUTATION, MUTATION_EXTENDED, COPY_NUMBER_ALTERATION, or MRNA_EXPRESSION.
gene_id: Entrez Gene ID.
common: HUGO Gene Symbol.
Columns 5 - N: Data for each case.










	
getMutationData(gene_list, genetic_profile_id, case_set_id=None, study=None, study_name=None)

	For data of type EXTENDED_MUTATION, you can request the full set of
annotated extended mutation data.

This enables you to, for example, determine which sequencing
center sequenced the mutation, the amino acid change that
results from the mutation, or gather links to predicted
functional consequences of the mutation.

Query Format


case_set_id= [case set ID] (required)
genetic_profile_id= [a single genetic profile IDs] (required).
gene_list= [one or more genes, specified as HUGO Gene Symbols or


Entrez Gene IDs](required)







Response Format

A list of dictionaries with the following entires


entrez_gene_id: Entrez Gene ID.
gene_symbol: HUGO Gene Symbol.
case_id: Case ID.
sequencing_center: Sequencer Center responsible for identifying



	this mutation.
	For example: broad.mit.edu.









	mutation_status: somatic or germline mutation status. all mutations
	returned will be of type somatic.





mutation_type: mutation type, such as nonsense, missense, or frameshift_ins.
validation_status: validation status. Usually valid, invalid, or unknown.
amino_acid_change: amino acid change resulting from the mutation.


	functional_impact_score: predicted functional impact score,
	as predicted by: Mutation Assessor.





xvar_link: Link to the Mutation Assessor web site.
xvar_link_pdb: Link to the Protein Data Bank (PDB) View within


Mutation Assessor web site.





	xvar_link_msa: Link the Multiple Sequence Alignment (MSA) view
	within the Mutation Assessor web site.





chr: chromosome where mutation occurs.
start_position: start position of mutation.
end_position: end position of mutation.




If a default study is set then a check will be performed to
set if the supplied case id is from the specified study. The
study can be over written using the study and study_name
parameters






	
getClinicalData(case_set_id=None, study=None, study_name=None)

	Retrieves overall survival, disease free survival and age at
diagnosis for specified cases.

Due to patient privacy restrictions, no other clinical data is
available.


case_set_id= [case set ID] (required)




A list of dictionaries with the following entries:


case_id: Unique Case Identifier.
overall_survival_months: Overall survival, in months.
overall_survival_status: Overall survival status, usually


indicated as “LIVING” or “DECEASED”.




disease_free_survival_months: Disease free survival, in months.
disease_free_survival_status: Disease free survival status,


usually indicated as “DiseaseFree” or “Recurred/Progressed”.




age_at_diagnosis: Age at diagnosis.




If a study is specified or a defualt study is set, then the
case_set_id will be tested to check if it exists for that
study.






	
getProteinArrayInfo(protein_array_type=None, gene_list=None, study=None, study_name=None)

	Retrieves information on antibodies used by reverse-phase protein
arrays (RPPA) to measure protein/phosphoprotein levels.


cancer_study_id= [cancer study ID] (required)
protein_array_type= [protein_level or phosphorylation]
gene_list= [one or more genes, specified as HUGO Gene
Symbols or Entrez Gene IDs].




A list of dictionaries with the following entires:


ARRAY_ID: The protein array ID.
ARRAY_TYPE: The protein array antibody type, i.e. protein_level


or phosphorylation.




GENE: The targeted gene name (HUGO gene symbol).
RESIDUE: The targeted resdue(s).




If no study is specified the default study is used. If that is
not specified an error is raised.






	
getProteinArrayData(protein_array_id=None, case_set_id=None, array_info=0, study=None, study_name=None)

	Retrieves protein and/or phosphoprotein levels measured by
reverse-phase protein arrays (RPPA).

case_set_id= [case set ID]
protein_array_id= [one or more protein array IDs] as list.
array_info= [1 or 0]. If 1, antibody information will also be exported.

If the parameter of array_info is not specified or it is not
1, returns a list of dictionaries with the following columns.

ARRAY_ID: The protein array ID.
Columns 2 - N: Data for each case.

If the parameter of array_info is 1, you will receive a list
of ordered dictionaries with the following entires:

ARRAY_ID: The protein array ID.
ARRAY_TYPE: The protein array antibody type, i.e. protein_level or


phosphorylation.




GENE: The targeted gene name (HUGO gene symbol).
RESIDUE: The targeted resdue(s).
Columns 5 - N: Data for each case.

If the defualt study is set then the case_set_id will be
check. The default study can be overidden using the study or
study_name parameters.






	
getLink(gene_list, study=None, study_name=None, report='full')

	return a perminant link to the cBioPortal report for the gene_list
cancer_study_id=[cancer study ID] gene_list=[a comma
separated list of HUGO gene symbols] (required)
report=[report to display; can be one of: full (default),
oncoprint_html]






	
getOncoprintHTML(gene_list, study=None, study_name=None)

	returns the HTML for the oncoprint report for the specified gene
list and study






	
setDefaultStudy(study=None, study_name=None)

	sets a new study as the default study. Will check that the study
id is valid






	
setDefaultCaseList(case_set_id, study=None, study_name=None)

	set the default case list. If study is not specified the default
study will be used.

The study will be used to check that the case_set exists.






	
getPercentAltered(gene_list, study=None, study_name=None, case_set_id=None, genetic_profile_id=None, threshold=2)

	Get the percent of cases that have one or more of the specified
alterations for each gene

study = [cancer_study_id] The study to use.


	study_name = [cancer_study_name] The name of the study to
	use. If neither this nor study are specified,
then the default is used.



	case_set_id = [case_set_id] The case list to use. If not
	specified, the default case list is used.





gene_list = [one or more genes, specified as HUGO Gene Symobls
or ENtrez Gene IDs] (require)

genetic_profile_id = [one or more genetic profile IDs] If none
specified all genetic profiles for the specified study are
used..

threhold = [z_score_threshold] the numeric threshold at which
a mrna expression z-score is said to be significant.

A list of dictionaries with the following entries
gene_id: The Entrez Gene ID
common: The Hugo Gene Symbol
altered_in: The percent of cases in which the gene is altered

One implementation note is that a guess must be made as to
wether a returned profile value represents a alteration or
not. Currently guesses are only made for copy number
variation, mrna expression and mutionation






	
getTotalAltered(gene_list, study=None, study_name=None, case_set_id=None, genetic_profile_id=None, threshold=2)

	Calculate the percent of cases in which any one of the specified genes are altered










	
exception CBioPortal.CDGSError(error, request)

	Bases: Exception

exception that handles errors returned by querys in the database









            

          

      

      

    

  

  
    
    

    FastaIterator.py - Iteration over fasta files
    

    

    

    
 
  

    
      
          
            
  
FastaIterator.py - Iteration over fasta files

This module provides a simple iterator of Fasta formatted files.  The
difference to the biopython iterator is that the iterators in this
module skip over comment lines starting with “#”.


Note

Another way to access the information in fasta formatted
files is through pysam [https://github.com/pysam-developers/pysam].




Reference


	
class FastaIterator.FastaRecord(title, sequence, fold=False)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a fasta record.


	
title

	the title of the sequence


	Type

	string










	
sequence

	the sequence


	Type

	string










	
fold

	the number of bases per line when writing out


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]














	
class FastaIterator.FastaIterator(f, *args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a iterator of fasta formatted files.


	Yields

	FastaRecord










	
FastaIterator.iterate(infile, comment='#', fold=False)

	iterate over fasta data in infile

Lines before the first fasta record are
ignored (starting with >) as well as
lines starting with the comment character.


	Parameters

	
	infile (File) – the input file


	comment (char) – comment character


	fold (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of bases before line split when writing out






	Yields

	FastaRecord










	
FastaIterator.iterate_together(*args)

	iterate synchronously over one or more fasta files.

The iteration finishes once any of the files is exhausted.

:param fasta-formatted files to be iterated upon:


	Yields

	tuple – a tuple of FastaRecord corresponding to
the current record in each file.










	
FastaIterator.count(filename)

	count number of sequences in fasta file.

This method uses the grep utility to count
lines starting with >.


	Parameters

	filename (string) – The filename



	Raises

	OSError – If the file does not exist



	Returns

	The number of sequences in the file.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    Fastq.py - methods for dealing with fastq files
    

    

    

    
 
  

    
      
          
            
  
Fastq.py - methods for dealing with fastq files

This module provides an iterator of fastq formatted files
(iterate()). Additional iterators allow guessing of the quality
score format (iterate_guess()) or converting them
(iterate_convert()) while iterating through a file.

guessFormat() inspects a fastq file to guess the quality score format
and getOffset() returns the numeric offset for quality score conversion
for a particular quality score format.


Note

Another way to access the information in fastq formatted
files is through pysam [https://github.com/pysam-developers/pysam].




Reference


	
class Fastq.Record(identifier, seq, quals, format=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A record representing a fastq formatted record.


	
identifier

	Sequence identifier


	Type

	string










	
seq

	Sequence


	Type

	string










	
quals

	String representation of quality scores.


	Type

	string










	
format

	Quality score format. Can be one of sanger,
illumina-1.8, solexa or phred64.


	Type

	string










	
guessFormat()

	return quality score format -
might return several if ambiguous.






	
guessDataType()

	return the datatype. This is done by inspecting the
sequence for basecalls/colorspace ints






	
trim(trim3, trim5=0)

	remove nucleotides/quality scores from the 3’ and 5’ ends.






	
trim5(trim5=0)

	remove nucleotides/quality scores from the 5’ ends.






	
toPhred()

	return qualities as a list of phred-scores.






	
fromPhred(quals, format)

	set qualities from a list of phred-scores.










	
Fastq.iterate(infile)

	iterate over contents of fastq file.






	
Fastq.iterate_guess(infile, max_tries=10000, guess=None)

	iterate over contents of fastq file.

Guess quality format by looking at the first max_tries entries and
then subsequently setting the quality score format for each entry.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	max_tries (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of records to examine for guessing the quality score
format.


	guess (string) – Default format. This format will be chosen in the quality
score format is ambiguous. The method checks if the guess
is compatible with the records read so far.






	Yields

	fastq – An object of type Record.



	Raises

	ValueError – If the ranges of the fastq records are not compatible,
    are incompatible with guess or are ambiguous.










	
Fastq.iterate_convert(infile, format, max_tries=10000, guess=None)

	iterate over contents of fastq file.

The quality score format is guessed and all subsequent records
are converted to format.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	format (string) – Quality score format to convert all records into.


	max_tries (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of records to examine for guessing the quality score
format.


	guess (string) – Default format. This format will be chosen in the quality
score format is ambiguous. The method checks if the guess
is compatible with the records read so far.






	Yields

	fastq – An object of type Record.



	Raises

	ValueError – If the ranges of the fastq records are not compatible,
    are incompatible with guess or are ambiguous.










	
Fastq.guessFormat(infile, max_lines=10000, raises=True)

	guess format of FASTQ File.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	max_lines (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of lines to examine for guessing the quality score
format.


	raises (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Raise ValueError if format is ambiguous






	Returns

	formats – list of quality score formats compatible with the file



	Return type

	list



	Raises

	ValueError – If the ranges of the fastq records are not compatible.










	
Fastq.guessDataType(infile, max_lines=10000, raises=True)

	guess datatype of FASTQ File from [colourspace, basecalls]


	Parameters

	
	infile (File) – 


	or file-like object to iterate over (File) – 


	max_lines (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of lines to examine for guessing the datatype


	raises (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Raise ValueError if format is ambiguous






	Returns

	formats – list of datatypes compatible with the file (should only ever be one!)



	Return type

	list



	Raises

	ValueError – If the ranges of the fastq records are not compatible.










	
Fastq.getOffset(format, raises=True)

	returns the ASCII offset for a certain format.

If raises is set a ValueError is raised if there is not a single
offset. Otherwise, a minimum offset is returned.


	Returns

	offset – The quality score offset



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
Fastq.getReadLength(filename)

	return readlength from a fastq file.

Only the first read is inspected. If there are
different read lengths in the file, the result
will be inaccurate.


	Returns

	read_length



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    GFF3 - Classes, functions and iterators for working with GFF3 files
    

    

    

    
 
  

    
      
          
            
  
GFF3 - Classes, functions and iterators for working with GFF3 files

This module mostly inherits from the GTF and replaces selected
functionality to allow working with GFF3 formatted files.


	
class GFF3.Entry

	Bases: cgat.GTF.Entry

representation of a GFF3 formatted entry.

This class inherits from GTF.Entry, but changes
the parsing to reflect GFF3.


	
parseInfo(attributes, line=None)

	Parse the attributes line of an entry,
line parameter provided purely for backwards compatability






	
getAttributeField()

	return the attributes field as a ; delimied field










	
GFF3.flat_file_iterator(infile)

	simple iterator that iterators over lines in a field
and yeilds GFF3 Entry objects






	
GFF3.iterator_from_gff(gff_iterator)

	to make this slot in with other gtf using scripts,
allow copying of an entry into gff3 format. Acts via str,
probably not the most efficient way to do things






	
GFF3.chrom_iterator(gff3_iterator)

	takes a an iterator and returns an iterator over iterators,
with a new instance every time a new chromosome is found








            

          

      

      

    

  

  
    
    

    GTF.py - Classes and methods for dealing with GTF/GFF formatted files
    

    

    

    
 
  

    
      
          
            
  
GTF.py - Classes and methods for dealing with GTF/GFF formatted files

The coordinates are kept internally in python coordinates (0-based,
open-closed), but are output as inclusive 1-based coordinates
according to http://www.sanger.ac.uk/Software/formats/GFF/.

The default GTF version is 2.2.

This module uses pysam [https://github.com/pysam-developers/pysam] to provide the principal engine for iterating over
files (iterate()). As a consequence, the returned objects are of
type pysam.GTFProxy().

The class defined in this model Entry is useful for re-formatting
records.

Apart from basic iteration, this module provides the following utilities:


	Additional iterators for grouping/modifying GTF formatted files:
track_iterator(), chunk_iterator(), iterator_contigs(),
transcript_iterator(), joined_iterator(), gene_iterator(),
flat_gene_iterator(), merged_gene_iterator(),
iterator_filtered(), iterator_sorted_chunks(),
iterator_min_feature_length(), iterator_sorted()
iterator_overlapping_genes(), iterator_transcripts2genes()
iterator_overlaps()


	Compare intervals: Identity(), HalfIdentity(), Overlap()


	Read GTF formatted files and optionally index them: readFromFile(),
readAsIntervals(), readAndIndex()


	Manipulate lists of GTF records: asRanges(), CombineOverlaps(),
SortPerContig(), toIntronIntervals(), toSequence()





	
GTF.iterator(infile)

	return a simple iterator over all entries in a file.






	
GTF.track_iterator(infile)

	a simple iterator over all entries in a file.






	
GTF.chunk_iterator(gff_iterator)

	iterate over the contents of a gff file.

return entries as single element lists






	
GTF.iterator_contigs(gffs)

	iterate over contigs.

TODO: implement as coroutines






	
GTF.transcript_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of entries with the same transcript id.

Any features without a transcript_id will be ignored.

The entries for the same transcript have to be consecutive
in the file. If strict is set an AssertionError will be
raised if that is not true.






	
GTF.joined_iterator(gff_iterator, group_field=None)

	iterate over the contents of a gff file.

return a list of entries with the same group id.
Note: the entries have to be consecutive in
the file.






	
GTF.gene_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of transcripts with the same gene id.

Note: the entries have to be consecutive in the file, i.e,
first sorted by transcript and then by gene id.

Genes with the same name on different contigs are resolved
separately in strict = False.






	
GTF.flat_gene_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of entries with the same gene id.

Note: the entries have to be consecutive in the file, i.e,
sorted by gene_id

Genes with the same name on different contigs are resolved
separately in strict = False






	
GTF.merged_gene_iterator(gff_iterator)

	iterate over the contents of a gtf file.

Each gene is merged into a single entry spanning the whole
stretch that a gene covers.

Note: the entries have to be consecutive in the file, i.e,
sorted by gene_id






	
GTF.iterator_filtered(gff_iterator, feature=None, source=None, contig=None, interval=None, strand=None)

	iterate over the contents of a gff file.

yield only entries for a given feature






	
GTF.iterator_sorted_chunks(gff_iterator, sort_by='contig-start')

	iterate over chunks in a sorted order

sort_by can be


	contig-start
	sort by position ignoring the strand



	contig-strand-start
	sort by position taking the strand into account



	contig-strand-start-end
	intervals with the same start position will be sorted by end position





returns the chunks.






	
GTF.iterator_min_feature_length(gff_iterator, min_length, feature='exon')

	select only those genes with a minimum length of a given feature.






	
GTF.iterator_sorted(gff_iterator, sort_order='gene')

	sort input and yield sorted output.






	
GTF.iterator_overlapping_genes(gtf_iterator, min_overlap=0)

	return overlapping genes.






	
GTF.iterator_transcripts2genes(gtf_iterator, min_overlap=0)

	cluster transcripts by exon overlap.

The gene id is set to the first transcript encountered of a gene.
If a gene stretches over several contigs, subsequent copies are
appended a number.






	
GTF.iterator_overlaps(gff_iterator, min_overlap=0)

	iterate over gff file and return a list of features that
are overlapping.

The input should be sorted by contig,start






	
GTF.Overlap(entry1, entry2, min_overlap=0)

	returns true, if entry1 and entry2 overlap by a minimum number of
residues.






	
GTF.Identity(entry1, entry2, max_slippage=0)

	returns true, if entry1 and entry2 are (almost) identical, allowing
a small amount of slippage at either end.






	
GTF.HalfIdentity(entry1, entry2, max_slippage=0)

	returns true, if entry1 and entry2 overlap and at least one end is
within max_slippage residues.






	
GTF.asRanges(gffs, feature=None)

	return ranges within a set of gffs.

Overlapping intervals are merged.

The returned intervals are sorted.






	
GTF.CombineOverlaps(old_gff, method='combine')

	combine overlapping entries for a list of gffs.

method can be any of combine|longest|shortest
only the first letter is important.






	
GTF.SortPerContig(gff)

	sort gff entries per contig and return a dictionary mapping a
contig to the begin of the list.






	
GTF.toIntronIntervals(chunk)

	convert a set of gtf elements within a transcript to intron coordinates.

Will use first transcript_id found.

Note that coordinates will still be forward strand coordinates






	
GTF.toSequence(chunk, fasta)

	convert a list of gff attributes to a single sequence.

This function ensures correct in-order concatenation on
positive/negative strand. Overlapping regions are merged.






	
GTF.readFromFile(infile)

	read records from file and return as list.






	
GTF.readAsIntervals(gff_iterator, with_values=False, with_records=False, merge_genes=False, with_gene_id=False, with_transcript_id=False, use_strand=False)

	read tuples of (start, end) from a GTF file.

This method ignores everything else but the coordinates.

The with_values, with_gene_id and with_records options are
exclusive.


	Parameters

	
	gff_iterator (iterator) – Iterator yielding GTF records.


	with_values – If True, the content of the score field is added to the tuples.


	with_records – If True, the entire record is added to the tuples.


	merge_genes – If true, the GTF records are passed through the :func:
merged_gene_iterator iterator first.


	with_gene_id – If True, the gene_id is added to the tuples.


	with_transcript_id – If True, the transcript_ids are added to the tuples.


	use_strand – If true, intervals will be grouped by contig and strand.
The default is to group by contig only.


	a dictionary of intervals by contig. (Returns) – 













	
GTF.readAndIndex(iterator, with_value=True)

	read from gtf stream and index.


	Returns

	an object of type IndexedGenome.IndexedGenome



	Return type

	index










	
exception GTF.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception GTF.ParsingError(message)

	Bases: GTF.Error

Exception raised for errors in the input.


	
message -- explanation of the error

	








	
GTF.toDot(v)

	convert value to ‘.’ if None






	
GTF.quote(v)

	return a quoted attribute.






	
class GTF.Entry

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

representation of a GTF formatted entry.


	
contig

	Chromosome/contig


	Type

	string










	
source

	The GTF source field


	Type

	string










	
feature

	The GTF feature field


	Type

	string










	
frame

	The frame


	Type

	string










	
start

	Start coordinate in 0-based coordinates, half-open coordinates


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
end

	End coordinate in 0-based coordinates, half-open coordinates


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
score

	Score associated with feature


	Type

	float [https://docs.python.org/2.7/library/functions.html#float]










	
strand

	Strand of feature


	Type

	string










	
gene_id

	Gene identifier of feature. Not present for GFF formatted
data.


	Type

	string










	
transcript_id

	Transcript identifier of feature. Not present for GFF formatted
data.


	Type

	string










	
attributes

	Dictionary of additional attributes in the GFF/GTF record (last column)


	Type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
read(line)

	read gff entry from line in GTF/GFF format.

<seqname> <source> <feature> <start> <end> <score>               <strand> <frame> [attributes] [comments]






	
parseInfo(attributes, line)

	parse attributes.

This method will set the gene_id and transcript_id attributes
if present.






	
invert(lcontig)

	invert genomic coordinates from forward to reverse coordinates and
back.


	Parameters

	lcontig (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of the chromosome that the feature resides on.










	
fromGTF(other, gene_id=None, transcript_id=None)

	fill record from other GFF/GTF entry.

The optional attributes are not copied.






	
fromBed(other, **kwargs)

	fill record from a bed entry.






	
copy(other)

	fill from other entry.

This method works if other is GTF.Entry or
pysam.GTFProxy.






	
asDict()

	return attributes as a dictionary.






	
hasOverlap(other, min_overlap=0)

	returns true, if overlap with other entry.






	
isIdentical(other, max_slippage=0)

	returns true, if self and other overlap completely.






	
isHalfIdentical(other, max_slippage=0)

	returns true, if self and other overlap.












            

          

      

      

    

  

  
    
    

    IndexedFasta.py - fast random access in fasta files
    

    

    

    
 
  

    
      
          
            
  
IndexedFasta.py - fast random access in fasta files

This module provides fast random access to fasta formatted
files that have been previously indexed. The indexing can be done
either through the samtools faidx tool (accessible through pysam [https://github.com/pysam-developers/pysam]) or
using the in-house methods implemented in this module.

The main class is IndexedFasta. This is a factory function
that provides transparent access to both samtools or cgat indexed
fasta files.  The basic usage to retrieve the sequence spanning the
region chr12:10,000-10,100 is:

from IndexedFasta import IndexedFasta
fasta = IndexedFasta("hg19")
fasta.getSequence("chr12", "+", 10000, 10100)





To index a file, use the scripts/index_fasta command line utility or the
createDatabase() function:

> python index_fasta.py hg19 chr*.fa





This module has some useful utility functions:


	splitFasta()
	split a fasta formatted file into smaller pieces.



	parseCoordinates()
	parse a coordinate string in various formats





but otherwise the module contains a multitude of additional functions that are
only of internal use.


Reference


	
IndexedFasta.writeFragments(outfile_fasta, outfile_index, fragments, mangler, size, write_all=False)

	write mangled fragments to outfile_fasta in chunks of size
updating outfile_index.

returns part of last fragment that has not been written and is
less than size and the number of fragments output.

If write_all is True, all of the fragments are written to
the file and the last file position is added to outfile_index
as well.






	
class IndexedFasta.Translator

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

translate a sequence.






	
class IndexedFasta.TranslatorPhred(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate phred quality scores.






	
class IndexedFasta.TranslatorSolexa(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate solexa quality scores.






	
class IndexedFasta.TranslatorRange200(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate pcap quality scores.

For example for PCAP scores.

These scores range from 0 to 100 and are the
“a weighted sum of input base quality values
(Huang and Madan 1999)

The numerical values from 0 to 200 are stored
as values form 33 to 233
“






	
class IndexedFasta.TranslatorBytes(*args, **kwargs)

	Bases: IndexedFasta.Translator

output binary values as bytes permitting values from 0 to 255

Note the resulting file will not be iterable as newline is not
a record-separator any more.






	
IndexedFasta.createDatabase(db, iterator, force=False, synonyms=None, compression=None, random_access_points=None, regex_identifier=None, clean_sequence=False, ignore_duplicates=False, allow_duplicates=False, translator=None)

	index files in filenames to create database.

Two new files are created - db.fasta and db_name.idx

If compression is enabled, provide random access points
every # bytes.

Dictzip is treated as an uncompressed file.

regex_identifier: pattern to extract identifier from description line.
If None, the part until the first white-space character is used.

translator: specify a translator






	
class IndexedFasta.cgatIndexedFasta(dbname)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an indexed fasta file.


	
setTranslator(translator=None)

	set the Translator to use.






	
getDatabaseName()

	returns the name of the database.






	
getToken(contig)

	check if token is in index.






	
getLength(contig)

	return sequence length for sbjct_token.






	
getLengths()

	return all sequence lengths.






	
compressIndex()

	compress index.
Creates a database interface to an index.






	
getContigs()

	return a list of contigs (no synonyms).






	
getContigSizes(with_synonyms=True)

	return hash with contig sizes including synonyms.






	
setConverter(converter)

	set converter from coordinate system to 0-based, both strand,
open/closed coordinate system.






	
getSequence(contig, strand='+', start=0, end=0, converter=None, as_array=False)

	get a genomic fragment.

A genomic fragment is identified by the coordinates
contig, strand, start, end.

The converter function supplied translated these coordinates
into 0-based coordinates. By default, start and end are assumed
to be pythonic coordinates and are forward/reverse coordinates.

If as_array is set to true, return the AString object. This might
be beneficial for large sequence chunks. If as_array is set to False,
return a python string.






	
getRandomCoordinates(size)

	returns coordinates for a random fragment of size #.

The coordinates are forward/reverse.

Default sampling mode:

Each residue has the same probability of being
in a fragment. Thus, the fragment can be smaller than
size due to contig boundaries.










	
class IndexedFasta.PysamIndexedFasta(dbname)

	Bases: IndexedFasta.cgatIndexedFasta

interface a  pysam/samtools indexed fasta file with the
cgatIndexedFasta API.


	
getSequence(contig, strand='+', start=0, end=0, converter=None, as_array=False)

	get a genomic fragment.

A genomic fragment is identified by the coordinates
contig, strand, start, end.

The converter function supplied translated these coordinates
into 0-based coordinates. By default, start and end are assumed
to be pythonic coordinates and are forward/reverse coordinates.

If as_array is set to true, return the AString object. This might
be beneficial for large sequence chunks. If as_array is set to False,
return a python string.










	
IndexedFasta.IndexedFasta(dbname, *args, **kwargs)

	factory function for IndexedFasta objects.






	
IndexedFasta.getConverter(format)

	return a converter function for converting various
coordinate schemes into 0-based, both strand, closed-open ranges.

converter functions have the parameters
x, y, s, l: with x and y the coordinates of
a sequence fragment, s the strand (True is positive)
and l being the length of the contig.

Format is a “-” separated combination of the keywords
“one”, “zero”, “forward”, “both”, “open”, “closed”:

zero/one: zero or one-based coordinates
forward/both: forward coordinates or forward/reverse coordinates
open/closed: half-open intervals (pythonic) or closed intervals






	
IndexedFasta.benchmarkRandomFragment(fasta, size)

	returns a random fragment of size.






	
IndexedFasta.verify(fasta1, fasta2, num_iterations, fragment_size, stdout=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, quiet=False)

	verify two databases.

Get segment from fasta1 and check for presence in fasta2.






	
IndexedFasta.splitFasta(infile, chunk_size, dir='/tmp', pattern=None)

	split a fasta file into a subset of files.

If pattern is not given, random file names are chosen.






	
IndexedFasta.parseCoordinates(s)

	parse a coordinate string.

The coordinate string can be various formats, such as
chr1:+:10:1000, chr1:10..1000.


	Returns

	
	contig (string) – The chromosome/contig.


	strand (char) – Strand. If not present, set to “+”.


	start (int) – Start of interval


	end (int) – End of interval. If not present, set to start + 1.


















            

          

      

      

    

  

  
    
    

    IndexedGenome.py - Random access to interval lists
    

    

    

    
 
  

    
      
          
            
  
IndexedGenome.py - Random access to interval lists

This module provides a consistent front-end to various interval containers.

Two implementations are available:


	NCL
	Nested containment lists as described in
http://bioinformatics.oxfordjournals.org/content/23/11/1386.short. The
implemenation was taken from pygr [http://code.google.com/p/pygr].



	quicksect
	Quicksect algorithm used in Galaxy, see here [https://github.com/brentp/quicksect].  This requires python.bx
to be installed. The benefit of quicksect is that it allows also
quick retrieval of intervals that are closest before or after an query.





The principal clas is IndexedGenome which uses NCL and stores
a value associated with each interval. Quicksect is equivalent
to IndexedGenome but uses quicksect. The Simple is a
light-weight version of IndexedGenome that does not store a
value and thus preserves space.

The basic usage is:

from IndexedGenome import IndexedGenome
index = IndexedGenome()
for contig, start, end, value in intervals:
   index.add(contig, start, end, value)

print index.contains("chr1", 1000, 2000)
print index.get("chr1", 10000, 20000)





The index is built in memory.


Reference


	
class IndexedGenome.IndexedGenome

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Genome with indexed intervals.


	
index_factory

	alias of cgat.NCL.NCL






	
get(contig, start, end)

	return intervals overlapping with key.










	
class IndexedGenome.Simple(*args, **kwargs)

	Bases: IndexedGenome.IndexedGenome

index intervals without storing a value.


	
index_factory

	alias of cgat.NCL.NCLSimple










	
class IndexedGenome.Quicksect(*args, **kwargs)

	Bases: IndexedGenome.IndexedGenome

index intervals using quicksect.

Permits finding closest interval in case there is
no overlap.


	
get(contig, start, end)

	return intervals overlapping with key.






	
before(contig, start, end, num_intervals=1, max_dist=2500)

	get closest interval before start.






	
after(contig, start, end, num_intervals=1, max_dist=2500)

	get closest interval after end.













            

          

      

      

    

  

  
    
    

    Sra.py - Methods for dealing with short read archive files
    

    

    

    
 
  

    
      
          
            
  
Sra.py - Methods for dealing with short read archive files

Utility functions for dealing with SRA formatted files from
the Short Read Archive.

Requirements:
* fastq-dump >= 2.1.7


Code


	
Sra.peek(sra, outdir=None)

	return the full file names for all files which will be extracted


	Parameters

	outdir (path) – perform extraction in outdir. If outdir is None, the extraction
will take place in a temporary directory, which will be deleted
afterwards.



	Returns

	
	files (list) – A list of fastq formatted files that are contained in the archive.


	format (string) – The quality score format in the fastq formatted files.















	
Sra.extract(sra, outdir, tool='fastq-dump')

	return statement for extracting the SRA file in outdir.
possible tools are fastq-dump and abi-dump. Use abi-dump for colorspace






	
Sra.prefetch(sra)

	Use prefetch from the SRA toolkit to download the local cache






	
Sra.clean_cache(sra)

	Remove the specified SRA file from the cache.






	
Sra.fetch_ENA(dl_path, outdir, protocol='ascp')

	Fetch fastq from ENA given accession






	
Sra.fetch_ENA_files(accession)

	Get the names of the files matching the ENA accession






	
Sra.fetch_TCGA_fastq(acc, filename, token=None, outdir='.')

	Get Fastq file from TCGA repository. Because of the nature of the
TCGA repository it assumes certain things:



	That data is paired-end fastq


	That the files end in _1.fastq or _2.fastq












	
Sra.fetch_TCGA_BAM(acc, token, outdir='.', filter_bed=None)

	Get BAM file from TCGA repository based on UUID. Will return
statement and path/filename of downloaded file. A bed file may be
provided to filter to remove contigs not present in the
reference genome






	
Sra.process_remote_BAM(infile, token=None, outdir='.', filter_bed=None)

	generate statement from .remote file









            

          

      

      

    

  

  
    
    

    VCF.py - Tools for working with VCF files
    

    

    

    
 
  

    
      
          
            
  
VCF.py - Tools for working with VCF files

The parser for VCF files is very simplistic.


Note

Another way to access the information in vcf formatted
files is through pysam [https://github.com/pysam-developers/pysam].



The Variant Call Format (vcf) is described
at http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0


Reference


	
class VCF.VCFEntry(data, samples)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A VCF Entry






	
class VCF.VCFFile(infile)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A VCF File









            

          

      

      

    

  

  
    
    

    AString.py - strings as arrays of characters
    

    

    

    
 
  

    
      
          
            
  
AString.py - strings as arrays of characters

This module provides the AString class to efficiently
represent long, chromosomal nucleotide sequences in memory.


Reference


	
class AString.AString(*args)

	Bases: array.array [https://docs.python.org/2.7/library/array.html#array.array]

implementation of a string as an array.

This class conserves memory as it uses only 1 byte per letter,
while python strings use the machine word size for a letter.

It adds a subset of the python string class such as upper() and
lower() for convenience. Slicing and printing return strings.

The AString can be constructed by any iterable that is
accepted by the constructor of array.array [https://docs.python.org/2.7/library/array.html#array.array].


	
upper()

	return upper case version.






	
lower()

	return lower case version.













            

          

      

      

    

  

  
    
    

    Genomics.py - Tools for working with genomic data
    

    

    

    
 
  

    
      
          
            
  
Genomics.py - Tools for working with genomic data


	Tags

	Python






Reference


	
Genomics.parse_region_string(s)

	parse a genomic region string.

Returns tuple of contig, start, end. Missing values are None.






	
Genomics.reverse_complement(s)

	reverse complement a sequence.

>>> complement("ACATACATACTA")
'TAGTATGTATGT'






	Returns

	



	Return type

	string










	
Genomics.GetHID(sequence)

	returns a hash value for a sequence.

The hash value is computed using md5 and converted
into printable characters.

>>> GetHID("ACATACATACTA")
'trcPGx9VNT36XMlG0XvUBQ'






	Returns

	



	Return type

	A hash value










	
Genomics.String2Location(s)

	convert a string to location information.

>>> String2Location("chr1:12:15")
('chr1', '+', 12, 15)






	Returns

	
	contig (string)


	strand (string)


	start (int)


	end (int)















	
Genomics.readContigSizes(infile)

	read sizes of contigs from file.


	Parameters

	infile (string) – Filename of tsv separated file.



	Returns

	



	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
Genomics.forceForwardCoordinates(start, end, strand, length)

	return forward coordinates.

If strand is negative, the coordinates in a and b
will be converted. If they are on the positive
strand, they will be returned as is.


	Parameters

	
	start (int [https://docs.python.org/2.7/library/functions.html#int]) – Start coordinate


	end (int [https://docs.python.org/2.7/library/functions.html#int]) – End coordinate


	strand (string) – Strand of interval. The values of “-”, “0”, “-1” indicate
a negative strand.


	length (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of chromosome.













	
Genomics.CountGeneFeatures(first_position, alignment, genomic_sequence=None, border_stop_codon=0, stop_codons=('TAG', 'TAA', 'TGA'))

	calculate number of genomic features in a peptide to genome
alignment.

Note that codons can be split, for example:

S 0 2 5 0 2 I 0 17541 3 0 2 S 1 2 5 0 2 I 0 27979 3 0 2 S 1 2






	Parameters

	
	first_position (int [https://docs.python.org/2.7/library/functions.html#int]) – Start of alignment on genome.


	alignment (string) – Alignment in CIGAR format, for example from exonerate_.


	genomic_sequence (string) – Genomic sequence for alignment


	border_stop_codon (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of codons that are ignored at the edges of match
regions.  border_stop_codon should be divisible by three.


	stop_codons (list) – List of stop codons






	Returns

	
	nintrons (int) – Number of introns


	nframeshifts (int) – Number of frameshifts in aligment.


	ngaps (int) – Number of gaps in aligment.


	nsplit (int) – Number of codons split by introns in alignment.


	nstopcodons (int) – Number of stop codons in alignment.


	disruptions (list) – List of disruptions in the prediction. Each
disruption is a tuple of ( “stop|frameshift”, position in protein,
position in cds, position on genomic sequence).















	
Genomics.Alignment2String(alignment)

	convert a tuple alignment to an alignment string.






	
Genomics.String2Alignment(source)

	convert an alignment string to a tuple alignment.






	
Genomics.GetAlignmentLength(alignment)

	return Alignment length






	
Genomics.Alignment2ExonBoundaries(alignment, query_from=0, sbjct_from=0, add_stop_codon=1)

	extract exon coordinates from a peptide2genome alignment.


	Parameters

	
	aligment (list) – List of tuples of the alignment in CIGAR format.


	query_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on peptide sequence.


	sbjct_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on nucleotide sequence.


	add_stop_codon (int [https://docs.python.org/2.7/library/functions.html#int]) – Add final stop codon to exon boundaries.






	Returns

	exons – A list of exons. Each exon is a tuple of (query_from,
query_pos, frame, sbjct_from, sbjct_pos, ali)



	Return type

	list










	
Genomics.RemoveFrameShiftsFromAlignment(row_ali, col_ali, gap_char='-')

	remove frame shifts in an alignment.

Frameshifts are gaps are 1, 2, 4, or 5 residues long.

>>> RemoveFrameShiftsFromAlignment("ABC-EFG", "AB-DEFG")
('ABEFG', 'ABEFG')






	Parameters

	
	row_ali (string) – Alignment string of row.


	col_ali (string) – Alignment string of column.


	gap_char (string) – Gap character to identify aligments.






	Returns

	
	new_row_ali (string) – New alignment string for row


	new_col_ali (string) – New aligment string for column















	
Genomics.MaskStopCodons(sequence, stop_codons=('TAG', 'TAA', 'TGA'))

	mask stop codons in a sequence.

Stop codons are masked with NNN.


	Parameters

	
	sequence (string) – Nucleotide sequence to mask.


	stop_codons (string) – List of known stop codons.






	Returns

	masked_sequence



	Return type

	string










	
Genomics.Alignment2DNA(alignment, query_from=0, sbjct_from=0)

	convert a peptide2genome alignment to a nucleotide2nucleotide
alignment.

Instead of peptide coordinates, the alignment will be
in codon coordinates.


	Parameters

	
	aligment (list) – List of tuples of the alignment in CIGAR format.


	query_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on peptide sequence.


	sbjct_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on nucleotide sequence.






	Returns

	alignment – The alignment as an alignlib.AlignmentVector object.



	Return type

	object [https://docs.python.org/2.7/library/functions.html#object]










	
Genomics.encodeGenotype(code)

	encode genotypes like GG, GA into a one-letter code.
The returned code is lower case if code[0] < code[1], otherwise
it is uppercase.






	
Genomics.decodeGenotype(code)

	decode single letter genotypes like m, M into two letters.
This is the reverse operation to encodeGenotype().






	
Genomics.resolveAmbiguousNA(code)

	resolve ambiguous nucleic acid letters.






	
Genomics.resolveReverseAmbiguousNA(genotype)

	map a genotype to a single letter amino acid amiguous code,
for example, CT -> Y.






	
Genomics.GetMapAA2Codons()

	returns a map of amino acids to codons

No stop codons.
.






	
Genomics.MapCodon2AA(codon, is_seleno=False, ignore_n=True)

	map a codon to an amino acid using the standard translation
tables

The mapping returns gaps as gaps and will return an amino acid
for incomplete codons if there is unambiguous mapping.

If is_seleno is set, the codon is translated for a selenoprotein.

If ignore_n is set, codons with n are returned
as ? in order to distinguish them from stop codons.

Amino acids are returned as upper-case letters.






	
Genomics.Alignment2PeptideAlignment(alignment, query_from=0, sbjct_from=0, genomic_sequence=None)

	convert a Peptide2DNA aligment to a Peptide2Peptide alignment.

How to handle frameshifts?






	
Genomics.translate(sequence, is_seleno=False, prefer_lowercase=True, ignore_n=False)

	convert DNA sequence to a peptide sequence

If is_seleno is set, “TGA” codons are treated as
encoding for selenocysteine.

If ignore_n is set, codons with n are returned
as ? in order to distinguish them from stop codons.






	
Genomics.TranslateDNA2Protein(*args, **kwargs)

	convert a DNA sequence to a peptide sequence.
keep case.

deprecated - use translate() instead.






	
Genomics.Alignment2CDNA(alignment, query_from=0, sbjct_from=0, genome=None, remove_frameshifts=0)

	build cDNA sequence from genomic fragment and
return alignment of query to it.






	
Genomics.Exons2Alignment(exons)

	build an cigar alignment string from a list of exons.






	
Genomics.AlignmentProtein2CDNA(src, exons1=None, exons2=None)

	convert a peptide alignment to a nucleotide
alignment.

multiplies coordinates with 3.
Insert introns.

Note: alignment starts at 1






	
Genomics.GetDegenerateSites(seq1, seq2, degeneracy=4, position=3)

	returns two new sequenes containing only degenerate sites.

Only unmutated positions are counted.






	
class Genomics.SequencePairInfo

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

the first characters are ACGT.


	
getGCContent()

	return GC content.










	
class Genomics.SequencePairInfoCodons

	Bases: Genomics.SequencePairInfo

the first characters are ACGT.






	
Genomics.AlignedPair2SubstitutionMatrix(seq1, seq2, alphabet)

	given a pair of sequences, calculate
a substitution matrix for the given alphabet.






	
Genomics.CalculatePairIndices(seq1, seq2, gap_char='-', with_codons=False)

	returns number of idential and transitions/transversions substitutions
in the alignment.

If with-codons = True, synonymous and nonsynonymous changes will
be recorded as well. The routine assumes no frame-shifts and will
count more than one change as non-synonymous.






	
Genomics.makeSubstitutionMatrix(type='EMBOSS')

	make alignator with DNA substitution matrix.

EMBOSS style matrix:
identity = 5
mismatch = -4
gop = -16
gep = -4

ClustalW style matrix:
match = 1 mismatch = 0
gop = -10 gep = -0.1






	
Genomics.CalculateRCSUValuesFromCounts(counts, pseudo_counts=0)

	calculate RCSU values for codons.

RCSU = relative frequency / uniform frequency






	
Genomics.CalculateCodonFrequenciesFromCounts(counts, pseudo_counts=0)

	calculate codon frequencies from codon counts per amino acid.
pseudo_counts are added if desired.






	
Genomics.CalculateCAIWeightsFromCounts(counts, pseudo_counts=0)

	calculate CAI weights from codon counts.
pseudo_counts are added if desired.






	
Genomics.IsJunk(contig)

	returns true, if contigs is likely to be junk.

This is done by name matching. Junk contigs contain either
one of the following:

random, unknown, chrU, chU.






	
Genomics.CountCodons(sequence)

	count the codons in a sequence.






	
Genomics.GetUniformCodonUsage()

	get list of frequencies for codons expected for uniform codon usage.






	
Genomics.GetBiasedCodonUsage(bias=1.0)

	get list of frequencies for codons according to some bias.

The first codon for each aa is the most biased, all others are less biased.

The ratio determines the relative bias between the first and all other
codons. 0.0 is no bias, 1.0 is complete bias.






	
Genomics.convertStrand(strand)

	convert various strand notations into [+-.].






	
Genomics.GetIntronType(sequence, both_strands=False)

	return intron type for an intronic sequence.

If both_strands is True, both strands are checked.






	
Genomics.printPrettyAlignment(seq1, *args)

	print a pretty alignment.






	
Genomics.ReadPeptideSequences(infile, filter=None, as_array=False, regex_identifier=None)

	read peptide sequence from fasta infile.






	
Genomics.ParseFasta2Hash(infile, filter=None, regex_identifier=None)

	read fasta formatted sequences file and build a hash.

Keys are all characters before the first whitespace in the
description line.

Previously, if the key contained a “:”, everything before the “:”
was removed.  This is not true any more.

Use array for higher space efficiency.

If regex_identifier is given, this is used to extract the identifier
from the fasta description line.









            

          

      

      

    

  

  
    
    

    Intervals.py - Utility functions for working with intervals
    

    

    

    
 
  

    
      
          
            
  
Intervals.py - Utility functions for working with intervals

This module contains utility functions for working intervals
or list of intervals.

An interval is a tuple of a start and end coordinate in python’s
0-based, half-open notation such as:

(12, 20)





An interval list is simply a list of such intervals.

The majority of the functions in this module take one or more lists of
intervals and return one or more new lists of intervals.


Reference


	
Intervals.getLength(intervals)

	return sum of intervals lengths.

>>> getLength([(10,20), (30,40)])
20










	
Intervals.combine(intervals)

	combine overlapping and adjacent intervals.

>>> combine([(10,20), (30,40)])
[(10, 20), (30, 40)]
>>> combine([(10,20), (20,40)])
[(10, 40)]
>>> combine([(10,20), (15,40)])
[(10, 40)]










	
Intervals.prune(intervals, first=None, last=None)

	truncates all intervals that are extending beyond first or last.

Empty intervals are deleted.






	
Intervals.complement(intervals, first=None, last=None)

	complement a list of intervals with intervals not in list.

>>> complement([(10,20), (15,40)])
[]
>>> complement([(10,20), (30,40)])
[(20, 30)]
>>> complement([(10,20), (30,40)], first=5)
[(5, 10), (20, 30)]






	Parameters

	
	intervals (list) – List of intervals


	first (int [https://docs.python.org/2.7/library/functions.html#int]) – First position. If given, the interval from first to
the first position in intervals is added.


	last (int [https://docs.python.org/2.7/library/functions.html#int]) – Last position. If given, the interval from the last position
in intervals to last is added.






	Returns

	intervals – A new list of intervals



	Return type

	list










	
Intervals.addComplementIntervals(intervals, first=None, last=None)

	complement a list of intervals with intervals not
in list and return both.

The resulting interval list is sorted.






	
Intervals.joined_iterator(intervals1, intervals2)

	iterate over the combination of two intervals.

returns the truncated intervals delineating the
ranges of overlap between intervals1 and intervals2.






	
Intervals.intersect(intervals1, intervals2)

	intersect two interval sets.

Return a set of intervals that is spanned by intervals in
both sets. Returns the union of the two intervals.






	
Intervals.truncate(intervals1, intervals2)

	truncate intervals in intervals1 by intervals2

Example: truncate( [(0,5)], [(0,3)] ) = [(3,5)]






	
Intervals.calculateOverlap(intervals1, intervals2)

	calculate overlap between two list of intervals.

The intervals within each set should not be overlapping.






	
Intervals.fromArray(a)

	get intervals from a binary array.






	
Intervals.combineAtDistance(intervals, min_distance)

	combine a list intervals and merge those that are less than a
certain distance apart.






	
Intervals.getIntersections(intervals)

	return regions were two intervals are overlapping.






	
Intervals.RemoveIntervalsContained(intervals)

	remove intervals that are fully contained in another

[(10, 100), (20, 50), (70, 120), (130, 200), (10, 50), (140, 210), (150, 200)]

results:

[(10, 100), (70, 120), (130, 200), (140, 210)]






	
Intervals.RemoveIntervalsSpanning(intervals)

	remove intervals that are full covering
another, i.e. always keep the smallest.

[(10, 100), (20, 50), (70, 120), (40,80), (130, 200), (10, 50), (140, 210), (150, 200)]

result:

[(20, 50), (40, 80), (70, 120), (150, 200)]






	
Intervals.ShortenIntervalsOverlap(intervals, to_remove)

	shorten intervals, so that there is no
overlap with another set of intervals.

assumption: intervals are not overlapping









            

          

      

      

    

  

  
    
    

    Motifs.py -
    

    

    

    
 
  

    
      
          
            
  
Motifs.py -


	Tags

	Python






Code


	
Motifs.countMotifs(infile, motifs)

	find regular expression motifs in
sequences within fasta formatted infile.






	
Motifs.getCounts(matches)

	count numbers of motifs.






	
Motifs.getOccurances(matches)

	count numbers of motifs, but only once per sequence






	
Motifs.iupac2regex(pattern)

	convert iupac to regex pattern






	
Motifs.regex2iupac(pattern)

	convert regex to iupac pattern









            

          

      

      

    

  

  
    
    

    SequencePairProperties.py - Computing metrics for aligned sequences
    

    

    

    
 
  

    
      
          
            
  
SequencePairProperties.py - Computing metrics for aligned sequences

This module provides methods for extracting and reporting sequence
properties of aligned nucleotide sequences such as percent identity,
substitution rate, etc. Usage is the same as
SequencePairProperties.


Reference


	
class SequencePairProperties.SequencePairPropertiesDistance(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairProperties

base class for distance estimators.






	
class SequencePairProperties.SequencePairPropertiesBaseML(options, *args, **kwargs)

	Bases: SequencePairProperties.SequencePairPropertiesDistance

Counts for nucleic acid sequences.

The first characters are ACGT.


	
loadPair(seq1, seq2)

	load sequence properties from a pair.










	
class SequencePairProperties.SequencePairPropertiesCountsNa(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairProperties

Counts for nucleic acid sequences.

The first characters are ACGT.


	
buildSubstitutionMatrix(seq1, seq2, alphabet)

	given a pair of sequences, calculate
a substitution matrix for the given alphabet.






	
loadPair(seq1, seq2)

	load sequence properties from a pair.










	
class SequencePairProperties.SequencePairPropertiesCountsCodons

	Bases: SequencePairProperties.SequencePairPropertiesCountsNa

the first characters are ACGT.






	
class SequencePairProperties.SequencePairPropertiesPID(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairPropertiesDistance

Percent identity.

The percent identity is the ratio of the number of identical
residues divided by the number of aligned residues.


	
loadPair(seq1, seq2)

	load sequence properties from a pair.













            

          

      

      

    

  

  
    
    

    SequenceProperties.py - Computing metrics of nucleotide sequences
    

    

    

    
 
  

    
      
          
            
  
SequenceProperties.py - Computing metrics of nucleotide sequences

This module provides methods for extracting and reporting sequence
properties of nucleotide sequences such as the composition, length,
etc.

The classes provide the algorithms to provide the property. They will
store the latest result for output. Thus, processing is a two-step
procedure:

from SequenceProperties import SequencePropertiesLength
from SequenceProperties import SequencePropertiesNA

counters = [SequencePropertiesLength(), SequencePropertiesNA()]

# output column headers
headers = sum(c.getHeaders() for c in counters]
print "      ".join(headers)

for sequence in sequences:
   # load sequence in each counter
   for c in counters:
       c.loadSequence(sequence)
   # output results
   print "   ".join(map(str, counters))





This design is useful to compute multiple properties while iterating
only once over an input file and output a single, multi-column table.


Note

While useful and in working order, the design of the classes is
cumbersome.




Reference


	
class SequenceProperties.SequenceProperties

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class.

This class is the base class for SequenceProperty objects. Derived
classes need to overload most of its methods.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesSequence

	Bases: SequenceProperties.SequenceProperties

Add properties: the actual sequence.


	sequence
	The sequence





This class outputs the actual sequence supplied.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesHid

	Bases: SequenceProperties.SequenceProperties

Add properties: a hash of sequence


	hid
	Hash identifier of a sequence





The hash is computed using the md5 algorithm and the resulting
byte sequence is then translated into printable characters.


	
loadSequence(sequence, seqtype='na')

	load hid sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesLength

	Bases: SequenceProperties.SequenceProperties

Add properties: sequence length and number of codons


	length
	Sequence length



	ncodons
	Length in codons





The number of codons is 0 for an amino-acid sequence.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesNA(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add properties: nucleotide composition


	nUnk
	Number of unknown residues



	nA, nC, nG, nT, nGC, nAT
	Nucleotide counts



	pA, pC, pG, pT, pGC, pAT
	Nucleotide frequencies






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesDN(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : dinucleotide counts


	nAA, nAC, …
	Dinucleotide counts



	mCountsOthers
	Unknown dinucleotides






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCpg(reference_usage=[])

	Bases: SequenceProperties.SequencePropertiesNA, SequenceProperties.SequencePropertiesDN

Add Properties : CpG density and observed / expected.


	CpG_count
	Number of CpG in sequence



	CpG_density
	CpG density, number of CpG divided by 2 * sequence length



	CpG_ObsExp
	Ratio of observed to expected number of CpG. The latter is
calculated as the product of nC * nG. The ratio is normalized
by the sequence length.  Set to 0 if no C or G in
sequence.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesGaps(gap_chars='xXnN', *args, **kwargs)

	Bases: SequenceProperties.SequenceProperties

Add Properties : number of gaps in a sequence

Gaps are identified by unknown characters ([XN])


	ngaps
	Number of gap characters in sequnce



	nseq_regions
	Number of ungapped regions



	ngap_regions
	Number of gapped regions






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
addProperties(other)

	add properties.










	
class SequenceProperties.SequencePropertiesDegeneracy

	Bases: SequenceProperties.SequencePropertiesLength

Add properties : codon degeneracy


	nstops
	Number of stop codons



	nsites1d
	Number of non-degenerate sites



	nsites2d, nsites3d, nsites4d
	Number 2-fold, 3-fold, 4-fold degenerate sites



	ngc
	Number of positions containing either G or C



	ngc3
	Number of 3rd codon position containing G or C



	ngc3
	Number of non-degenerate 3rd codon position containing G or C



	n2gc3, n3gc3, n4gc3
	Number of 2-fold, 3-fold, 4-fold degenerate 3rd codon positions
containing G or C



	pgc
	Percentage of positions containing either G or C



	pgc3
	Percentage of 3rd codon position containing G or C



	pgc3
	Percentage of non-degenerate 3rd codon position containing G or C



	p2gc3, p3gc3, p4gc3
	Percentage of 2-fold, 3-fold, 4-fold degenerate 3rd codon positions
containing G or C





The degeneracies for amino acids are:

2: MW are non-degenerate.
9: EDKNQHCYF are 2-fold degenerate.
1: I is 3-fold degenerate
5: VGATP are 4-fold degenerate.
3: RLS are 2-fold and four-fold degenerate.
   Depending on the first two codons, the codons are counted
   as two or four-fold degenerate codons. This is encoded
   in the file Genomics.py.





The number of degenerate sites is computed across all
codon positions.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
updateProperties()

	update fields from counts.










	
class SequenceProperties.SequencePropertiesAA(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : amino acid composition of nucleotide sequence.

The codons in the nucleotide sequence are translated into amino
acids before counting. The nucleotide sequence must be a multiple
of 3.


	nA, nC, nD, …
	Amino acid counts.



	pA, pC, pD, …
	Amino acid frequencies.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
getHeaders()

	Return list of data headers










	
class SequenceProperties.SequencePropertiesAminoAcids(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : amino acid composition


	nA, nC, nD, …
	Amino acid counts.



	pA, pC, pD, …
	Amino acid frequencies.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCodons

	Bases: SequenceProperties.SequencePropertiesLength

Add Properties : codon frequencies


	nAAA, nAAC, …
	Codon counts



	pAAA, pAAC, …
	Codon frequencies






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCodonUsage

	Bases: SequenceProperties.SequencePropertiesCodons

Add properties : Codon usage

The codon frequency is the ratio of the number of times a
particular codon is used for a particular amino acid, didived the
number of times that particular amino acid appears in the
sequence. A ratio of 1.0 means that this particular codon is
always used to encode its amino acid, while a frequency of 0.5
means it is used 50% of the times.


	rAAA, rAAC, …
	Codon frequencies.






	
addProperties(other)

	add properties.










	
class SequenceProperties.SequencePropertiesCodonTranslator

	Bases: SequenceProperties.SequencePropertiesCodonUsage

Add properties : codon sequence is translated into frequencies.


	tsequence
	comma separated list of codon frequencies. The frequencies are
in percentages.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesBias(reference_usage=[], pseudocounts=0)

	Bases: SequenceProperties.SequencePropertiesCodons

Add properties : bias measures of codon sequence.

This class outputs metrics showing how biased the codon usage in a
particular sequence is compared to a reference codon usage.  The
reference codon usage is given as a dictionary of codon
frequencies and multiple dictionaries can be given to compute the
bias against multiple codon usages.


	entropy
	Entropy of the sequence.



	ml0, ml1, …
	Message length of sequence compared to reference codon
usages.



	relml0, relml1, …
	Relative message length of sequence compared to reference codon
usages. The relative message length is the message lenght divided
by the number of codons.



	relentropy0, relentropy1, …
	Relative entropy of sequence compared to reference codon usages.
Also called conditional entropy or encoding cost.



	kl0, kl1, …
	Kullback-Leibler Divergence (relative entropy) of sequence compared
to reference codon usages.






	Parameters

	
	reference_usage (list) – A list of codon frequency tables. The bias will be computed
against each.


	pseudocounts (int [https://docs.python.org/2.7/library/functions.html#int]) – Pseudo-counts to add









	
getMessageLength(usage)

	return message length of a sequence
in terms of its reference usage.






	
getEntropy(usage=None)

	return entropy of a source in terms of a reference usage.
Also called conditional entropy or encoding cost.

Note that here I compute the sum over 20 entropies,
one for each amino acid.

If not given, calculate entropy.






	
getKL(usage)

	return Kullback-Leibler Divergence (relative entropy) of sequences with
respect to reference codon usage.










	
class SequenceProperties.SequencePropertiesCounts(alphabet)

	Bases: SequenceProperties.SequenceProperties

Add Properties : Residue counts against arbirtrary alphabet


	nUnk
	Number of unknown residues



	nA, nB, …
	Character counts



	pA, pB, …
	Character frequencies






	Parameters

	alphabet (string) – List of characters in alphabet






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesEntropy(alphabet, pseudocounts=0)

	Bases: SequenceProperties.SequencePropertiesCounts

Add properties : Entropy of a sequence


	entropy
	Entropy of the sequence






	Parameters

	
	alphabet (string) – List of characters in alphabet


	pseudocounts (int [https://docs.python.org/2.7/library/functions.html#int]) – Pseudo-counts to add









	
addProperties(other)

	add properties.






	
getEntropy(usage=None)

	return entropy of a source in terms of a reference usage.

Also called conditional entropy or encoding cost.













            

          

      

      

    

  

  
    
    

    Variants.py -
    

    

    

    
 
  

    
      
          
            
  
Variants.py -


	Tags

	Python






Code


	
class Variants.Variant(pos, reference, genotype)

	Bases: tuple

Create new instance of Variant(pos, reference, genotype)


	
property genotype

	Alias for field number 2






	
property pos

	Alias for field number 0






	
property reference

	Alias for field number 1










	
Variants.ExtendedVariant

	alias of Variants.Variant






	
Variants.updateVariants(variants, lcontig, strand, phased=True)

	update variants such that they use same coordinate
system (and strand) as the transcript

fixes 1-ness of variants






	
Variants.mergeVariants(variants)

	merge overlapping variants.

Overlapping variants occur if there are two deletions
at the same location:


WT      ACTG
Allele1 -CT-
Allele2 —-




This will be encoded by samtools as (0-based coordinates):

0 * -A/ACTG
3 * -G/-G





This upsets the re-constitution algoritm.

This method separates these two variants into two non-overlapping
variants making use of variable length deletions.


0 * -A/-A
1 * —G/-CTG




Another case:


WT      ACTG
Allele1 ACT-
Allele2 —-




This will be encoded by samtools as (0-based coordinates):

0 * */-ACTG
3 * -G/*





This method separates these two as:

0 * */-ACT
3 * -G/-G










	
Variants.indexVariants(variants)

	build index of variants for ranged retrieval.






	
Variants.buildAlleles(sequence, variants, reference_start=0, phased=True)

	build alleles for sequence adding variants.

Variants are assumed to be in 0-based coordinates on the same strand as the sequence.
reference_start is the position of the first base of sequence. Set to 0, if
the positions in variants are relative to sequence.






	
Variants.buildOffsets(variants, phased=True, contig=None)

	collect coordinate offsets.

This methods takes a set of variants and computes
coordinates offsets based on indels.

Conflicting variants will be removed.

Returns a list of variants, a list of removed variants and a list of offsets.









            

          

      

      

    

  

  
    
    

    WrapperCodeML.py -
    

    

    

    
 
  

    
      
          
            
  
WrapperCodeML.py -


	Tags

	Python






Code


	
exception WrapperCodeML.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception WrapperCodeML.ParsingError(message, line=None)

	Bases: WrapperCodeML.Error

Exception raised for errors while parsing


	
message -- explanation of the error

	








	
exception WrapperCodeML.UsageError(message)

	Bases: WrapperCodeML.Error

Exception raised for errors while starting


	
message -- explanation of the error

	








	
class WrapperCodeML.CodeMLBranchInfo(branch1, branch2, kaks, ka, ks, ndn, sds, n, s)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

result with branch information.






	
class WrapperCodeML.BaseMLResult

	Bases: WrapperCodeML.CodeMLResult

result object for BaseML.






	
class WrapperCodeML.CodeMLResultSites(num_sequences, model)

	Bases: WrapperCodeML.CodeMLResult

result with site specific information.






	
class WrapperCodeML.CodeMLResultPairs

	Bases: WrapperCodeML.CodeMLResult

results for a pairwise codeml run.


	
fromResult(result)

	build pairwise results from tree.










	
class WrapperCodeML.CodeMLResultPair

	Bases: WrapperCodeML.CodeMLResult

results for a pairwise comparison.






	
class WrapperCodeML.CodeMLAncestralSequence(sequence, accuracy_per_site, accuracy_per_sequence)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an ancestral sequence.






	
class WrapperCodeML.CodeML

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
GetOptions()

	return options in pretty format






	
AddOptions(parser)

	add options to an OptionParser object.






	
SetOptions(options)

	set options from the command line.






	
WriteAlignment(mali)

	write alignment in Phylip format.






	
WriteTree(tree)

	write tree to file. The root of the tree is removed.






	
writeControlFile(outfile, filename_sequences='input', filename_output='output', filename_tree=None, options={})

	write a codeml.ctl file into outfile.






	
parseRst(inlines, result)

	parse lines from rst file.






	
checkSection(lines, section_start)

	check if section starts with string section_start.






	
getSection(lines, *args)

	check if section starts with string section_start.






	
parseLog(lines_log, result)

	parse log output.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse CodeML output. This is rather tricky, as paml output is as
freeformat as it can get.  Also, there is a log file and an
output file. Proceed sequentially through file.










	
class WrapperCodeML.CodeMLSites

	Bases: WrapperCodeML.CodeML


	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse codeml output for site-specific analysis.






	
parseGrids(lines, result)

	parse grid information.






	
parseSites(lines, result)

	parse site specific model results.










	
class WrapperCodeML.CodeMLPairwise

	Bases: WrapperCodeML.CodeML


	
parseLog(lines_log, result)

	parse log output.

This routine collects the rho values for each pair.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse codeml output for pairwise rate calculation.






	
parsePairs(lines, result)

	parse pairwise results.










	
class WrapperCodeML.BaseML

	Bases: WrapperCodeML.CodeML


	
AddOptions(parser)

	add options to an OptionParser object.






	
SetOptions(options)

	set options from the command line.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse BASEML output. This is rather tricky, as paml output is as
freeformat as it can get.  Also, there is a log file and an
output file. Proceed sequentially through file.






	
parseFrequencies(inlines, result)

	parse frequency section.










	
class WrapperCodeML.Evolver

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

interface class for running evolver.


	
writeControlFile(outfile)

	write control file to outfile.






	
fromMali(mali)

	compute codon table from a multiple alignment.






	
setUniformFrequencies()

	use uniform codon frequencies.






	
calculateScale(ds)

	calculate tree scale for a given dS value.

The branch scale is given by:

t = 3 dS * ps + 3 omega * dS * (1-ps)
t = 3 dS * (ps + omega (1 - ps )






	
setTree(tree)

	set tree.






	
run(ds=None, tree=None, test=False, dump=False)

	run evolver.










	
class WrapperCodeML.EvolverBaseml(*args, **kwargs)

	Bases: WrapperCodeML.Evolver

interface class for running evolver for nucleotides.


	
setUniformFrequencies()

	use uniform codon frequencies.






	
fromMali(mali)

	compute frequencies from a multiple alignment.






	
getParameters()

	get parameters for a model.

From the MCbase.dat:
Parameter kappa or rate parameters in the substituton model:
For TN93, two kappa values are required, while for REV, 5 values
(a,b,c,d,e) are required (see Yang 1994 for the definition of these
parameters).
The kappa parameter is defined differently under HKY85 (when k=1 means
no transition bias) and under F84 (when k=0 means no bias).
JC69 and F81 are considered species cases of HKY85, so use 1 for kappa
for those two models.  Notation is from my two papers in JME in 1994.






	
writeControlFile(outfile)

	write control file to outfile.










	
WrapperCodeML.getOptions(options)

	translate command line options to PAML options.






	
WrapperCodeML.runEvolver(options)

	run evolver.









            

          

      

      

    

  

  
    
    

    IGV.py - Simple wrapper to the IGV socket interface
    

    

    

    
 
  

    
      
          
            
  
IGV.py - Simple wrapper to the IGV socket interface


	Tags

	Python





This code was written by Brent Pedersen.

Downloaded from https://github.com/brentp/bio-playground/blob/master/igv/igv.py
on Nov.30 2011.


	
IGV.startIGV(command='igv.sh', port=None)

	start IGV on a specific port.






	
class IGV.IGV(host='127.0.0.1', port=60151, snapshot_dir='/tmp/igv')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Simple wrapper to the IGV (http://www.broadinstitute.org/software/igv/home)
socket interface (http://www.broadinstitute.org/software/igv/PortCommands)

requires:



	
	you have IGV running on your machine (launch with webstart here:
	http://www.broadinstitute.org/software/igv/download)







	
	you have enabled port communication in
	View -> Preferences… -> Advanced












Successful commands return ‘OK’

example usage:

>>> igv = IGV()
>>> igv.genome('hg19')
'OK'





>>> igv.load('http://www.broadinstitute.org/igvdata/1KG/pilot2Bams/NA12878.SLX.bam')
'OK'
>>> igv.go('chr1:45,600-45,800')
'OK'






	#save as svg, png, or jpg
	>>> igv.save('/tmp/r/region.svg')
'OK'
>>> igv.save('/tmp/r/region.png')
'OK'







	# go to a gene name.
	>>> igv.go('muc5b')
'OK'
>>> igv.sort()
'OK'
>>> igv.save('muc5b.png')
'OK'







	# get a list of commands that will work as an IGV batch script.
	>>> print "\n".join(igv.commands)
snapshotDirectory /tmp/igv
genome hg19
goto chr1:45,600-45,800
snapshotDirectory /tmp/r
snapshot region.svg
snapshot region.png
goto muc5b
sort base
snapshot muc5b.png









Note, there will be some delay as the browser has to load the annotations
at each step.


	
sort(option='base')

	options is one of: base, position, strand, quality, sample, and
readGroup.












            

          

      

      

    

  

  
    
    

    Masker.py - Wrapper for sequence masking tools
    

    

    

    
 
  

    
      
          
            
  
Masker.py - Wrapper for sequence masking tools


	Tags

	Python






Code


	
class Masker.Masker

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a masker preserves gaps, but it does not preserve
whitespace characters.


	
getAlphabet(sequence)

	get sequence type (aa,na,codons).






	
maskSequence(peptide_sequence)

	mask peptide sequence






	
maskSequences(sequences)

	mask a collection of sequences.










	
class Masker.MaskerBias

	Bases: Masker.Masker






	
class Masker.MaskerSeg

	Bases: Masker.Masker






	
class Masker.MaskerDustMasker

	Bases: Masker.Masker

use dustmasker. masked chars are returned as
lower case characters.






	
class Masker.MaskerRandom(proportion=10, *args, **kwargs)

	Bases: Masker.Masker

randomly mask a proportion of positions in a sequence
in multiple alignment.






	
Masker.maskSequences(sequences, masker=None)

	return a list of masked sequence.


	masker can be one of
	dust/dustmasker * run dustmasker on sequences
softmask        * use softmask to hardmask sequences













            

          

      

      

    

  

  
    
    

    Histogram.py - Various functions to deal with histograms
    

    

    

    
 
  

    
      
          
            
  
Histogram.py - Various functions to deal with histograms


	Author

	


	Tags

	Python





Histograms can be calculated from a list/tuple/array of
values. The histogram returned is then a list of tuples
of the format [(bin1,value1), (bin2,value2), …].


	
Histogram.CalculateFromTable(dbhandle, field_name, from_statement, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None)

	get a histogram using an SQL-statement.
Intervals can be either supplied directly or are build
from the data by providing the number of bins and optionally
a minimum or maximum value.

If no number of bins are provided, the bin-size is 1.

This command uses the INTERVAL command from MYSQL, i.e. a bin value
determines the upper boundary of a bin.






	
Histogram.CalculateConst(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None)

	calculate a histogram based on a list or tuple of values.






	
Histogram.Calculate(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None, no_empty_bins=0, dynamic_bins=False, ignore_out_of_range=True)

	calculate a histogram based on a list or tuple of values.

use scipy for calculation.






	
Histogram.Scale(h, scale=1.0)

	rescale bins in histogram.






	
Histogram.convert(h, i, no_empty_bins=0)

	add bins to histogram.






	
Histogram.Combine(source_histograms, missing_value=0)

	combine a list of histograms
Each histogram is a sorted list of bins and counts.
The counts can be tuples.






	
Histogram.Print(h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	format
	0 = print histogram in several lines
1 = print histogram on single line










	
Histogram.Write(outfile, h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	Parameters

	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line










	
Histogram.Fill(h)

	fill every empty value in histogram with
previous value.






	
Histogram.Add(h1, h2)

	adds values of histogram h1 and h2 and
returns a new histogram






	
Histogram.SmoothWrap(histogram, window_size)

	smooth histogram by sliding window-method, where
the window is wrapped around the borders. The sum of
all values is entered at center of window.






	
Histogram.PrintAscii(histogram, step_size=1)

	print histogram ascii-style.






	
Histogram.Count(data)

	count categorized data. Returns a list
of tuples with (count, token).






	
Histogram.Accumulate(h, num_bins=2, direction=1)

	add successive counts in histogram.
Bins are labelled by group average.






	
Histogram.Cumulate(h, direction=1)

	calculate cumulative distribution.






	
Histogram.AddRelativeAndCumulativeDistributions(h)

	adds relative and cumulative percents to a histogram.






	
Histogram.histogram(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first.
Ex: vals = [100, 110, 160, 200, 160, 110, 200, 200, 220]
histogram(vals) ==> [(100, 1), (110, 2), (160, 2), (200, 3), (220, 1)]
histogram(vals, 1) ==> [(200, 3), (160, 2), (110, 2), (100, 1), (220, 1)]
histogram(vals, 1, lambda v: round(v, -2)) ==> [(200.0, 6), (100.0, 3)]






	
Histogram.cumulate(histogram)

	cumulate histogram in place.

histogram is list of (bin, value) or (bin, (values,) )






	
Histogram.normalize(histogram)

	normalize histogram in place.

histogram is list of (bin, value) or (bin, (values,) )






	
Histogram.fill(iterator, bins)

	fill a histogram from bins.

The values are given by an iterator so that the histogram
can be built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins.  Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array.  The last range is given by
bins[N] <= range_N < infinity.  Values less than bins[0] are
not included in the histogram.


	Parameters

	
	-- The iterator. (iterator) – 


	-- 1D array.  Defines the ranges of values to use during (bins) – 


	histogramming. – 








Returns:
1D array.  Each value represents the occurences for a given
bin (range) of values.






	
Histogram.fillHistograms(infile, columns, bins)

	fill several histograms from several columns in a file.

The histograms are built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins.  Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array.  The last range is given by
bins[N] <= range_N < infinity.  Values less than bins[0] are
not included in the histogram.


	Parameters

	
	-- The input file. (file) – 


	-- columns to use (columns) – 


	-- a list of 1D arrays.  Defines the ranges of values to use during (bins) – 


	histogramming. – 








Returns:
a list of 1D arrays.  Each value represents the occurences for a given
bin (range) of values.

WARNING: missing value in columns are ignored








            

          

      

      

    

  

  
    
    

    Histogram2D.py - functions for handling two-dimensional histograms.
    

    

    

    
 
  

    
      
          
            
  
Histogram2D.py - functions for handling two-dimensional histograms.


	Tags

	Python






	
Histogram2D.Calculate(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.

If bin_function is given, map it over values first.






	
Histogram2D.Print(h, bin_function=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	Parameters

	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line












            

          

      

      

    

  

  
    
    

    Stats.py - statistical utility functions
    

    

    

    
 
  

    
      
          
            
  
Stats.py - statistical utility functions


	Tags

	Python






Code


	
Stats.getSignificance(pvalue, thresholds=[0.05, 0.01, 0.001])

	return cartoon of significance of a p-Value.






	
class Stats.Result

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

allow both member and dictionary access.






	
Stats.doLogLikelihoodTest(complex_ll, complex_np, simple_ll, simple_np, significance_threshold=0.05)

	perform log-likelihood test between model1 and model2.






	
Stats.doBinomialTest(p, sample_size, observed, significance_threshold=0.05)

	perform a binomial test.

Given are p: the probability of the NULL hypothesis, the sample_size
and the number of observed counts.






	
Stats.doChiSquaredTest(matrix, significance_threshold=0.05)

	perform chi-squared test on a matrix.

The observed/expected values are in rows, the categories are in
columns, for example:









	set

	protein_coding

	intronic

	intergenic



	observed

	92

	90

	194



	expected

	91

	10

	15






If there are only two categories (one degrees of freedom) the
Yates correction is applied.  For each entry (observed-expected),
the value 0.5 is subtracted ignoring the sign of the difference.

The test throws an exception if

1. one or more expected categories are less than 1 (it does not
matter what the observed values are)


	more than one-fifth of expected categories are less than 5









	
Stats.doPearsonChiSquaredTest(p, sample_size, observed, significance_threshold=0.05)

	perform a pearson chi squared test.

Given are p: the probability of the NULL hypothesis, the sample_size
and the number of observed counts.

For large sample sizes, this test is a continuous approximation to
the binomial test.






	
class Stats.DistributionalParameters(values=None, format='%6.4f', mode='float')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a collection of distributional parameters. Available properties
are:

mMean, mMedian, mMin, mMax, mSampleStd, mSum, mCounts

This method is deprecated - use Summary instead.


	
updateProperties(values)

	update properties.

If values is an vector of strings, each entry will be converted
to float. Entries that can not be converted are ignored.






	
getZScore(value)

	return zscore for value.






	
setFormat(format)

	set number format.






	
getHeaders()

	returns header of column separated values.






	
getHeader()

	returns header of column separated values.










	
class Stats.Summary(values=None, format='%6.4f', mode='float', allow_empty=True)

	Bases: Stats.Result

a collection of distributional parameters. Available properties
are:

mean, median, min, max, samplestd, sum, counts


	
getHeaders()

	returns header of column separated values.






	
getHeader()

	returns header of column separated values.










	
Stats.doFDRPython(pvalues, vlambda=None, pi0_method='smoother', fdr_level=None, robust=False, smooth_df=3, smooth_log_pi0=False, pi0=None, plot=False)

	modeled after code taken from
http://genomics.princeton.edu/storeylab/qvalue/linux.html.

I did not like the error handling so I translated most to python.

Compute FDR after method by Storey et al. (2002).






	
class Stats.CorrelationTest(s_result=None, method=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

coefficient is r, not r squared






	
Stats.filterMasked(xvals, yvals, missing=('na', 'Nan', None, ''), dtype=<class 'float'>)

	convert xvals and yvals to numpy array skipping pairs with
one or more missing values.






	
Stats.doCorrelationTest(xvals, yvals)

	compute correlation between x and y.

Raises a value-error if there are not enough observations.






	
Stats.getPooledVariance(data)

	return pooled variance from a
list of tuples (sample_size, variance).






	
Stats.computeROC(values)

	return a roc curve for values. Values
is a sorted list of (value, bool) pairs.

Deprecated - use getPerformance instead

returns a list of (FPR,TPR) tuples.






	
class Stats.PairedTTest(statistic, pvalue)

	Bases: tuple

Create new instance of PairedTTest(statistic, pvalue)


	
property pvalue

	Alias for field number 1






	
property statistic

	Alias for field number 0










	
Stats.doPairedTTest(vals1, vals2)

	perform paired t-test.

vals1 and vals2 need to contain the same number of elements.






	
Stats.doWelchsTTest(n1, mean1, std1, n2, mean2, std2, alpha=0.05)

	Welch’’s approximate t-test for the difference of two means of
heteroscedasctic populations.

This functions does a two-tailed test.

see PMID: 12016052


	Parameters

	
	n1int
	number of variates in sample 1



	n2int
	number of variates in sample 2



	mean1float
	mean of sample 1



	mean2float
	mean of sample 2



	std1float
	standard deviation of sample 1



	std2float
	standard deviation of sample 2









returns a WelchTTest






	
Stats.getAreaUnderCurve(xvalues, yvalues)

	compute area under curve from a set of discrete x,y coordinates
using trapezoids.

This is only as accurate as the density of points.






	
Stats.getSensitivityRecall(values)

	return sensitivity/selectivity.

Values is a sorted list of (value, bool) pairs.

Deprecated - use getPerformance instead






	
class Stats.ROCResult(value, pred, tp, fp, tn, fn, tpr, fpr, tnr, fnr, rtpr, rfnr)

	Bases: tuple

Create new instance of ROCResult(value, pred, tp, fp, tn, fn, tpr, fpr, tnr, fnr, rtpr, rfnr)


	
property fn

	Alias for field number 5






	
property fnr

	Alias for field number 9






	
property fp

	Alias for field number 3






	
property fpr

	Alias for field number 7






	
property pred

	Alias for field number 1






	
property rfnr

	Alias for field number 11






	
property rtpr

	Alias for field number 10






	
property tn

	Alias for field number 4






	
property tnr

	Alias for field number 8






	
property tp

	Alias for field number 2






	
property tpr

	Alias for field number 6






	
property value

	Alias for field number 0










	
Stats.getPerformance(values, skip_redundant=True, false_negatives=False, bin_by_value=True, monotonous=False, multiple=False, increasing=True, total_positives=None, total_false_negatives=None)

	compute performance estimates for a list of (score, flag)
tuples in values.

Values is a sorted list of (value, bool) pairs.

If the option false-negative is set, the input is +/- or 1/0 for
a true positive or false negative, respectively.

TP: true positives
FP: false positives
TPR: true positive rate  = true_positives /  predicted
P: predicted
FPR: false positive rate = false positives  / predicted
value: value






	
Stats.doMannWhitneyUTest(xvals, yvals)

	apply the Mann-Whitney U test to test for the difference of medians.






	
Stats.adjustPValues(pvalues, method='fdr', n=None)

	returns an array of adjusted pvalues

Reimplementation of p.adjust in the R package.

p: numeric vector of p-values (possibly with ‘NA’s).  Any other
R is coerced by ‘as.numeric’.

method: correction method. Valid values are:

n: number of comparisons, must be at least ‘length(p)’; only set
this (to non-default) when you know what you are doing

For more information, see the documentation of the
p.adjust method in R.






	
Stats.savitzky_golay(y, window_size, order, deriv=0, rate=1)

	Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.


	Parameters

	
	y (array_like, shape (N,)) – the values of the time history of the signal.


	window_size (int [https://docs.python.org/2.7/library/functions.html#int]) – the length of the window. Must be an odd integer number.


	order (int [https://docs.python.org/2.7/library/functions.html#int]) – the order of the polynomial used in the filtering.
Must be less then window_size - 1.


	deriv (int [https://docs.python.org/2.7/library/functions.html#int]) – the order of the derivative to compute (default = 0 means only
smoothing)






	Returns

	ys – the smoothed signal (or it’s n-th derivative).



	Return type

	ndarray, shape (N)





Notes

The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.

Examples

t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label=’Noisy signal’)
plt.plot(t, np.exp(-t**2), ‘k’, lw=1.5, label=’Original signal’)
plt.plot(t, ysg, ‘r’, label=’Filtered signal’)
plt.legend()
plt.show()

References


	1

	A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.



	2

	Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688













            

          

      

      

    

  

  
    
    

    MatrixTools.py -
    

    

    

    
 
  

    
      
          
            
  
MatrixTools.py -


	Tags

	Python






Code


	
MatrixTools.addOptions(parser)

	add matrices to option parser.






	
MatrixTools.getMatrixFromEdges(lines, options, in_map_token2row={}, in_map_token2col={})

	read matrix from lines






	
MatrixTools.buildMatrixFromLists(lists, dtype=<class 'float'>, default=None)

	build a matrix from a list of lists.

Each list is a list of tuples (row, value).
The columns are given by order of the lists.

Returns matrix, row_headers






	
MatrixTools.buildMatrixFromTables(infiles, column, column_header=0, dtype=<class 'float'>, default=None)

	build a matrix from a column called column in a series of input files.

If column_value is None, the first column is taken as the name of the row.

The columns are given by order of the input files.

returns matrix, row_headers






	
MatrixTools.buildMatrixFromEdges(edges, in_map_token2row={}, in_map_token2col={}, is_symmetric=False, missing_value=0, diagonal_value=0, dtype=<class 'int'>)

	build a matrix from an edge-list representation.

For example, the following list of tuples:

[('A', 'B', 1),
 ('A', 'C', 2),
 ('B', 'C', 3)]





will be converted to the following matrix:

  A B C
A   1 2
B     3
C





If is_symmetric is set to True, the matrix is assumed to be
symmetric and missing values will automatically be filled:

  A B C
A   1 2
B 1   3
C 2 3





If edge list may contain four elements, in which case the
fourth element is expected to be the value of the lower
diagonal in a symmetric matrix:

[('A', 'B', 1, 4),
 ('A', 'C', 2, 5),
 ('B', 'C', 3, 6)]





will yield:

  A B C
A   1 2
B 4   3
C 5 6





returns a numpy matrix and lists of row and column names.









            

          

      

      

    

  

  
    
    

    Iterators.py - Iterator functions
    

    

    

    
 
  

    
      
          
            
  
Iterators.py - Iterator functions

A collection of general purpose iterators.


	
Iterators.sample(iterable, sample_size=None)

	sample # copies from iterator without replacement.

Stores a temporary copy of the items in iterable. The function has
thus a possibly high memory footprint and long pre-processing time
to yield the first element.

If sample_size is not given, the iterator returns elements in
random order (see random.shuffle())


Note

This snippet was downloaded from an unknown source.








	
Iterators.group_by_distance(iterable, distance=1)

	group integers into non-overlapping intervals that
are at most distance apart.

>>> list( group_by_distance( (1,1,2,4,5,7) ) )
[(1, 3), (4, 6), (7, 8)]





>>> list( group_by_distance( [] ) )
[]





>>> list( group_by_distance( [3] ) )
[(3, 4)]





>>> list( group_by_distance( [3,2] ) )
Traceback (most recent call last):
...
ValueError: iterable is not sorted: 2 < 3






Note

This snippet was downloaded from an unknown source.










            

          

      

      

    

  

  
    
    

    SetTools.py - Tools for working on sets
    

    

    

    
 
  

    
      
          
            
  
SetTools.py - Tools for working on sets

Some of the functions in this module precede the set [https://docs.python.org/2.7/library/stdtypes.html#set]
datatype in python.


Reference


	
SetTools.combinations(list_of_sets)

	create all combinations of a list of sets

>>> combinations([set((1,2)), set((2,3))])
[((0,), set([1, 2]), set([1, 2])), ((1,), set([2, 3]), set([2, 3]))]
>>> combinations([set((1,2)), set((2,3)), set((3,4))])
[((0,), set([1, 2]), set([1, 2])), ((1,), set([2, 3]), set([2, 3])), ((2,), set([3, 4]), set([3, 4])), ((0, 1), set([1, 2, 3]), set([2])), ((0, 2), set([1, 2, 3, 4]), set([])), ((1, 2), set([2, 3, 4]), set([3]))]






	Returns

	result – The resut is a list of tuples containing (set_composition, union,
intersection)



	Return type

	list










	
SetTools.writeSets(outfile, list_of_sets, labels=None)

	output a list of sets as a tab-separated file.

This method build a list of all items contained across all sets
and outputs a matrix of 0’s and 1’s denoting set membership. The
items are in the table rows and the sets are in the table columns.


	Parameters

	
	outfile (File) – File to write to


	list_of_sets (list) – The list of sets to output


	labels (list) – List of labels(column names)













	
SetTools.unionIntersectionMatrix(list_of_sets)

	build union and intersection matrix of a list of sets.

>>> unionIntersectionMatrix([set((1,2)), set((2,3))])
array([[0, 1],
       [3, 0]])
>>> unionIntersectionMatrix([set((1,2)), set((2,3)), set((3,4))])
array([[0, 1, 0],
       [3, 0, 1],
       [4, 3, 0]])






	Parameters

	list_of_sets (list) – The list of sets to work with.



	Returns

	matrix – The matrix is a list of lists. The upper diagonal of the
matrix contains the size of the union of two sets and the
lower diagonal the intersection of two sets.



	Return type

	numpy.matrix










	
SetTools.getAllCombinations(*sets)

	generate all combination of elements from a collection of sets.

This method is derived from a python recipe by Zoran Isailovski:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/410685

>>> getAllCombinations(set((1,2)), set((2,3)), set((3,4)))
[(1, 2, 3), (1, 2, 4), (1, 3, 3), (1, 3, 4), (2, 2, 3), (2, 2, 4), (2, 3, 3), (2, 3, 4)]










	
SetTools.xuniqueCombinations(items, n)

	Return a list of unique combinations of items in list.

>>> list(xuniqueCombinations([1, 2, 3], 1))
[[1], [2], [3]]
>>> list(xuniqueCombinations([1, 2, 3], 2))
[[1, 2], [1, 3], [2, 3]]
>>> list(xuniqueCombinations([1, 2, 3], 3))
[[1, 2, 3]]










	
SetTools.compareLists(list1, list2)

	returns the union and the disjoint members of two lists.


Note

Deprecated
Use python sets instead.




	Returns

	
	unique1 (set) – Elements unique in set1


	unique2 (set) – Elements unique in set2


	common (set) – Elements in both lists.


















            

          

      

      

    

  

  
    
    

    Tree.py - A phylogenetic tree
    

    

    

    
 
  

    
      
          
            
  
Tree.py - A phylogenetic tree

The Tree is derived from the class from Bio.Nexus.Trees.Tree
adding some additional functionality.


Reference


	
Tree.updateNexus(nexus)

	change trees in a nexus object (see Biopython_) to Tree.






	
Tree.Nop(x)

	empty function for tree traversal






	
class Tree.Tree(*args, **kwargs)

	Bases: Bio.Nexus.Trees.Tree

A phylogenetic tree.

This class represents a tree using a chain of nodes with on
predecessor (=ancestor) and multiple successors (=subclades).

Ntree(self,tree).


	
root_at_node(node, distance=0)

	root tree at node.


	Parameters

	
	node – New root


	distance (float [https://docs.python.org/2.7/library/functions.html#float]) – Distance of node to new root.


	is a subset of the code taken from root_with_outgroup. (This) – 













	
to_string(support_as_branchlengths=False, branchlengths_only=False, plain=True, write_all_taxa=False, branchlength_format='%1.5f', support_format='%1.2f', format='nexus')

	Return a paup compatible tree line.


	Parameters

	
	support_as_branchlengths (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, output bootstrap support value as branch lengths.


	branchlengths_only (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Only output branchlengths, no support values


	plain (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Output plain tree (no branch lengths/support values).


	write_all_taxa (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, internal node names are output


	branchlength_format (string) – Format to use for branch lengths


	support_format (string) – Format to use for bootstrap support values


	format (string) – Either nexus on NHX.






	Returns

	tree – A PAUP compatible tree line.



	Return type

	string










	
get_nodes(node_id)

	Return a list of nodes downwards from a node (self, node_id).

The list includes the given node_id.






	
get_leaves(node_id)

	Return a list of leaf nodes downward from a node (self, node_id).






	
root_midpoint()

	perform midpoint rooting of tree.

The root is placed at equal distance to the two leaves
furthest apart in the tree (centroid of the tree).






	
getNumLeaves()

	return list with number of leaves beyond each node






	
root_balanced()

	perform balanced rooting of tree.

The root is placed such that the number of leaves
on either side of the tree is equal (or at most
different by 1).






	
dfs(node_id, pre_function=<function Nop>, descend_condition=<function Nop>, post_function=<function Nop>)

	dfs tree tree traversal starting at node_id.

Apply functions pre_function at first and
post_function at last visit of a node.






	
writeToFile(outfile, with_branchlengths=True, format='nh')

	write a tree to a file.






	
truncate(node_id, taxon=None, keep_node=None)

	truncate tree at node_id.

This function will not change any branch lengths.
If keep is given, single child nodes will be collapsed
until keep_node is reached.






	
relabel(map_old2new, warn=False)

	relabel taxa in tree using the provided mapping.






	
rescaleBranchLengths(value)

	rescale branch length so that they sum up to value.













            

          

      

      

    

  

  
    
    

    TreeTools.py - Tools for working with trees
    

    

    

    
 
  

    
      
          
            
  
TreeTools.py - Tools for working with trees

This module contains functions to work with gene and/or species trees.


Reference


	
TreeTools.Newick2Nexus(infile)

	convert newick formatted tree(s) into a nexus object.

Multiple trees are separated by a semicolon. Tree names can
be given by fasta-style separators, i.e., lines starting with
‘>’.

If the token [&&NHX is found in the tree, it is assumed to be
output from njtree and support values are added. Support values are
added in the format taxon:support:branchlength


	Parameters

	infile (object [https://docs.python.org/2.7/library/functions.html#object]) – Input data. Can be a file, a list of lines or a single line.



	Returns

	nexus



	Return type

	Bio.Nexus.Nexus










	
TreeTools.Nexus2Newick(nexus, with_branchlengths=True, with_names=False, write_all_taxa=False)

	convert nexus tree format to newick format.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to output


	with_branch_lengths (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, output branchlengths.


	with_names (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, add node names.


	write_all_taxa (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Ouput taxa for internal nodes.






	Returns

	output – Trees in Newick format.



	Return type

	string










	
TreeTools.Tree2Newick(tree, with_branch_lengths=True, write_all_taxa=False)

	convert tree to newick format.






	
TreeTools.Newick2Tree(txt)

	convert tree to nexus format.






	
TreeTools.WriteNexus(nexus, **kwargs)

	write trees in nexus file format.






	
TreeTools.GetTaxa(tree)

	retrieve all taxa of leaves in a tree.






	
TreeTools.GetTaxonomicNames(tree)

	get list of taxa.






	
TreeTools.MapTaxa(tree, map_old2new, remove_unknown=False)

	update taxa in tree to new taxa.


	Parameters

	
	tree (Tree) – The tree to update.


	map_old2new (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping old taxa to new taxa.


	remove_unknown (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, taxa not in map_old2new will be removed.













	
TreeTools.Branchlength2Support(tree)

	copy values stored as branchlength to into support

The branchlength property is not changed.

This step is necessary when support has been stored as branchlength
(e.g. paup), and has thus been read in as branchlength.






	
TreeTools.Species2Genes(nexus, map_species2genes)

	convert a species tree to a gene tree.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to work on


	map_species2genes (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping species names to gene names













	
TreeTools.Genes2Species(nexus, map_gene2species)

	convert a gene tree into a species tree.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to work on


	map_gene2species (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping gene names to species names













	
TreeTools.BuildMapSpecies2Genes(genes, pattern_species='^([^|]+)[|]')

	build a map of species to genes

This method assumes that gene names contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	genes (list) – List of genes


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	
	map_species2genes (dict) – Mapping between species to one or more genes


	map_gene2species (dict) – Mapping between a gene to the species















	
TreeTools.GetMonophyleticPairs(tree)

	build list of monophyletic pairs in tree.






	
TreeTools.GetTaxaForSpecies(tree, species, pattern_species='^([^|]+)[|]')

	get all taxa of a given species.

This method assumes that node labels contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	genes (list) – List of genes


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	taxa – List of taxa from this species.



	Return type

	list










	
TreeTools.IsMonophyleticForSpecies(tree, species, pattern_species='^([^|]+)[|]')

	check if a tree is monophyletic for a species.

This method assumes that node labels contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	tree (Tree) – Tree to analyse


	species (string) – Species to check


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
TreeTools.IsMonophyleticForTaxa(tree, taxa, support=None)

	check if a tree is monophyletic for a list of taxa.


	Parameters

	
	tree (Tree) – Tree to analyse


	taxa (list) – List of taxa


	support (float [https://docs.python.org/2.7/library/functions.html#float]) – Minimum bootstrap support






	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
TreeTools.GetLeaves(tree, node)

	Return leaves in tree below node.






	
TreeTools.IsSingleSpecies(tree, node, pattern_species='^([^|]+)[|]')

	True if taxa below node contain the same species.






	
TreeTools.Transcript2GeneTree(tree, map_transcript2gene, map_gene2transcripts)

	convert a transcript tree into a gene tree.

supply a map for mapping transcripts to genes.

The procedure for converting a transcript tree into a gene tree:

If there are two genes, and they are monophyletic, no matter how many
transcripts, the order is as follows:


1 Merge all nodes into two, one for each gene.


	2 The distance between the genes is the minimum distance observed between
	two transcripts from different genes. Half of this will be set as the
branch length from the gene leaves.








If this is not possible for a set of genes, the procedure will fail and not
return a gene tree.






	
TreeTools.MapTerminalTaxa(tree, mapping)

	map taxa in leaves in all trees.






	
TreeTools.GetCommonAncestor(tree, taxa)

	retrieve common ancestor for a list of taxa.

Reroot tree. Check if it is monopyletic. If it is, return root,
otherwise, return -1.






	
TreeTools.TreeDFS(tree, node_id, pre_function=<function Nop>, descend_condition=<function Nop>, post_function=<function Nop>)

	BFS tree tree traversal starting at node_id.

Apply functions pre_function at first and
post_function at last visit of a node.






	
TreeTools.GetMaxIndex(tree)

	get maximum node number.






	
TreeTools.GetBranchLengths(tree)

	return an array with minimum and maximum branch length.






	
TreeTools.Reroot(tree, taxa)

	reroot tree with taxa - the list of
taxa does not need to be monophyletic.






	
TreeTools.GetSubsets(tree, node=None, with_decoration=True)

	return subsets below a certain node including
their height (distance from leaves) and branchlength






	
TreeTools.CountBranchPoints(tree, taxa)

	count the number branch points together with their
distances for a given list of taxa.

return a list of branch points






	
TreeTools.IsCompatible(tree1, tree2)

	check if two trees are compatible.

note: this will delete support information.






	
TreeTools.Tree2Graph(tree)

	return tree as a list of edges in a graph.






	
TreeTools.Graph2Tree(links, label_ancestral_nodes=False)

	build tree from list of nodes.

Assumption is that links always point from parent to child.






	
TreeTools.GetAllNodes(tree)

	return all nodes in the tree.






	
TreeTools.GetDistancesBetweenTaxa(tree, taxa1, taxa2)

	get average branchlength between taxa1 and taxa2.






	
TreeTools.PruneTerminal(tree, taxon)

	Prunes a terminal taxon from the tree.

id_of_previous_node = prune(tree,taxon)
If taxon is from a bifurcation, the connecting node will be collapsed
and its branchlength added to remaining terminal node. This might be no
longer a meaningful value.

direct copy of Nexus.Trees.py - don’t know why have a separate method,
maybe there was a bug in Nexus.Trees.






	
TreeTools.GetSubtree(tree, node_id)

	return a copy of tree from node_id downwards.






	
TreeTools.Unroot(tree)

	unroot tree.






	
TreeTools.GetSize(tree)

	return the length of the tree. This is the maximum node_id + 1.

This quantity is useful for tree traversal while updating
a container.






	
TreeTools.PruneTree(tree, taxa, keep_distance_to_root=False)

	prune tree: keep only those taxa in list.






	
TreeTools.GetNodeMap(tree1, tree2)

	map nodes between tree1 and tree2.






	
TreeTools.ReconciliateByRio(gene_tree, species_tree, extract_species, extract_gene=None, outgroup_species=None, min_branch_length=0.0)

	Gene tree G and species tree S

If outgroup_species is given: trees will be cut of
as soon as one of the outgroup species is part of a subtree.
The corresponding node type will be out-paralog. Out-paralog
relationship is cast upwards.

Input trees are rooted and binary.

Output: gene tree with duplication/speciation assigned to each node.

Initialization:


Number nodes in S in pre-order traversal (root = 1), such
that child nodes are always larger than parent nodes.

For each external node g of G, set M(g) to the number of the
external node in S with the matching species name.




Recursion:


Visit each internal node g of G in post-order traversal, (i.e.
from leaves to root):

set a = M(g1) # g1 = first child of current node g
set b = M(g2) # g2 = second child of current node g

while a != b:
    if a > b:
          set a = parent of node a in species tree
    else:
          set b = parent of node b in species tree
set M(g) = a

if M(g) == M(g1) or M(g) == M(g2):
    g is duplication
else:
    g is speciation








The algorithm returns an array for each node with its type.

If extract_gene is given, the algorithm will label transcription nodes
for alternative transcripts (duplications involving the same gene).

The algorithm has been extended to accomodate the following test cases:


	Alternative transcripts
	Alternative transcripts that span genes from other species are permitted,
if at most one gene of the other species is involved.

To avoid over-counting of speciation events, the one subtree with the
least species is masked.





If the branch length of a node in the gene tree is shorter than min_branch_length,
the resultant node is masked, because the topology might be dodgy.






	
TreeTools.CountDuplications(gene_tree, species_tree, node_types, extract_species, extract_gene=None)

	count duplications.

given are gene and species tree and node types (duplication/speciation)

extract_species gives the species for an OTU in the gene tree

Extract_gene gives the gene for an OTU in the gene tree. If not given,
all transcripts are counted as unique.






	
TreeTools.GetParentNodeWhereTrue(node_id, tree, stop_function)

	walk up in gene tree and stop where stop_function is true.

The walk finishes at the root.

returns tuple of node and distance.






	
TreeTools.GetChildNodesWhereTrue(node_id, tree, stop_function)

	walk down in tree and stop where stop_function is true

The walk finishes at the leaves.

returns a list of tuples of nodes and distance.






	
TreeTools.GetDistanceToRoot(tree)

	return list with distance to root for each node.






	
TreeTools.traverseGraph(graph, start, block=[])

	traverse graph, go not passed nodes in block.






	
TreeTools.convertTree2Graph(tree)

	convert tree to a graph.






	
TreeTools.calculatePatternsFromTree(tree, sort_order)

	calculate patterns from a tree.









            

          

      

      

    

  

  
    
    

    RLE.py - a simple run length encoder
    

    

    

    
 
  

    
      
          
            
  
RLE.py - a simple run length encoder


	Tags

	Python





Taken from: http://rosettacode.org/wiki/Run-length_encoding#Python


	
RLE.encode(input_array)

	encode array or string.

return tuples of (count, value).

>>> encode(array.array( "i", (10,10,10,10,20,20,20,20) ) )
[(4, 10), (4, 20)]





>>> encode("aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa")
[(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')]










	
RLE.decode(lst, typecode)

	decode to array

>>> decode( [(4, 10), (4, 20)], typecode="i" )
array('i', [10, 10, 10, 10, 20, 20, 20, 20])





>>> decode( [(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')], typecode="c" )
array('c', 'aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa')










	
RLE.compress(input_string, bytes=1)

	return compressed stream.








            

          

      

      

    

  

  
    
    

    SVGdraw.py - generate SVG drawings
    

    

    

    
 
  

    
      
          
            
  
SVGdraw.py - generate SVG drawings


	Tags

	Python





This module has been copied from 3rd party resources.

SVGdraw uses an object model drawing and a method toXML to create SVG graphics
by using easy to use classes and methods usualy you start by creating a drawing eg


d=drawing()
#then you create a SVG root element
s=svg()
#then you add some elements eg a circle and add it to the svg root element
c=circle()
#you can supply attributes by using named arguments.
c=circle(fill=’red’,stroke=’blue’)
#or by updating the attributes attribute:
c.attributes[‘stroke-width’]=1
s.addElement(c)
#then you add the svg root element to the drawing
d.setSVG(s)
#and finaly you xmlify the drawing
d.toXml()




this results in the svg source of the drawing, which consists of a circle
on a white background. Its as easy as that;)
This module was created using the SVG specification of www.w3c.org and the
O’Reilly (www.oreilly.com) python books as information sources. A svg viewer
is available from www.adobe.com


	
class SVGdraw.pathdata(x=None, y=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

class used to create a pathdata object which can be used for a path.
although most methods are pretty straightforward it might be useful to look at the SVG specification.


	
closepath()

	ends the path






	
move(x, y)

	move to absolute






	
relmove(x, y)

	move to relative






	
line(x, y)

	line to absolute






	
relline(x, y)

	line to relative






	
hline(x)

	horizontal line to absolute






	
relhline(x)

	horizontal line to relative






	
vline(y)

	verical line to absolute






	
relvline(y)

	vertical line to relative






	
bezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy absolut






	
relbezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy relative






	
smbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy absolut






	
relsmbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy relative






	
qbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy absolut






	
relqbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy relative






	
smqbezier(x, y)

	smooth quadratic bezier to xy absolut






	
relsmqbezier(x, y)

	smooth quadratic bezier to xy relative






	
ellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag  to xy absolut






	
relellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag  to xy relative










	
class SVGdraw.SVGelement(type, attributes, elements, text, namespace, **args)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Creates a arbitrary svg element and is intended to be subclassed not used on its own.
This element is the base of every svg element it defines a class which resembles
a xml-element. The main advantage of this kind of implementation is that you don’t
have to create a toXML method for every different graph object. Every element
consists of a type, attribute, optional subelements, optional text and an optional
namespace. Note the elements==None, if elements = None:self.elements=[] construction.
This is done because if you default to elements=[] every object has a reference
to the same empty list.


	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)










	
class SVGdraw.tspan(text=None, **args)

	Bases: SVGdraw.SVGelement

ts=tspan(text=’’,**args)

a tspan element can be used for applying formatting to a textsection
usage:
ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
st=spannedtext()
st.addtspan(ts)
t=text(3,5,st)






	
class SVGdraw.tref(link, **args)

	Bases: SVGdraw.SVGelement

tr=tref(link=’’,**args)

a tref element can be used for referencing text by a link to its id.
usage:
tr=tref(‘#linktotext’)
st=spannedtext()
st.addtref(tr)
t=text(3,5,st)






	
class SVGdraw.spannedtext(textlist=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

st=spannedtext(textlist=[])

a spannedtext can be used for text which consists of text, tspan’s and tref’s
You can use it to add to a text element or path element. Don’t add it directly
to a svg or a group element.
usage:

ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
tr=tref(‘#linktotext’)
tr.attributes[‘fill’]=’red’
st=spannedtext()
st.addtspan(ts)
st.addtref(tr)
st.addtext(‘This text is not bold’)
t=text(3,5,st)






	
class SVGdraw.rect(x=None, y=None, width=None, height=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

r=rect(width,height,x,y,fill,stroke,stroke_width,**args)

a rectangle is defined by a width and height and a xy pair






	
class SVGdraw.ellipse(cx=None, cy=None, rx=None, ry=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

e=ellipse(rx,ry,x,y,fill,stroke,stroke_width,**args)

an ellipse is defined as a center and a x and y radius.






	
class SVGdraw.circle(cx=None, cy=None, r=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

c=circle(x,y,radius,fill,stroke,stroke_width,**args)

The circle creates an element using a x, y and radius values eg






	
class SVGdraw.point(x, y, fill='black', **args)

	Bases: SVGdraw.circle

p=point(x,y,color)

A point is defined as a circle with a size 1 radius. It may be more efficient to use a
very small rectangle if you use many points because a circle is difficult to render.






	
class SVGdraw.line(x1=None, y1=None, x2=None, y2=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

l=line(x1,y1,x2,y2,stroke,stroke_width,**args)

A line is defined by a begin x,y pair and an end x,y pair






	
class SVGdraw.polyline(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],…],fill,stroke,stroke_width,**args)

a polyline is defined by a list of xy pairs






	
class SVGdraw.polygon(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],…],fill,stroke,stroke_width,**args)

a polygon is defined by a list of xy pairs






	
class SVGdraw.path(pathdata, fill=None, stroke=None, stroke_width=None, id=None, **args)

	Bases: SVGdraw.SVGelement

p=path(path,fill,stroke,stroke_width,**args)

a path is defined by a path object and optional width, stroke and fillcolor






	
class SVGdraw.text(x=None, y=None, text=None, font_size=None, font_family=None, text_anchor=None, font_style=None, **args)

	Bases: SVGdraw.SVGelement

t=text(x,y,text,font_size,font_family,**args)

a text element can bge used for displaying text on the screen






	
class SVGdraw.textpath(link, text=None, **args)

	Bases: SVGdraw.SVGelement

tp=textpath(text,link,**args)

a textpath places a text on a path which is referenced by a link.






	
class SVGdraw.pattern(x=None, y=None, width=None, height=None, patternUnits=None, **args)

	Bases: SVGdraw.SVGelement

p=pattern(x,y,width,height,patternUnits,**args)

A pattern is used to fill or stroke an object using a pre-defined
graphic object which can be replicated (“tiled”) at fixed intervals
in x and y to cover the areas to be painted.






	
class SVGdraw.title(text=None, **args)

	Bases: SVGdraw.SVGelement

t=title(text,**args)

a title is a text element. The text is displayed in the title bar
add at least one to the root svg element






	
class SVGdraw.description(text=None, **args)

	Bases: SVGdraw.SVGelement

d=description(text,**args)

a description can be added to any element and is used for a tooltip
Add this element before adding other elements.






	
class SVGdraw.lineargradient(x1=None, y1=None, x2=None, y2=None, id=None, **args)

	Bases: SVGdraw.SVGelement

lg=lineargradient(x1,y1,x2,y2,id,**args)

defines a lineargradient using two xy pairs.
stop elements van be added to define the gradient colors.






	
class SVGdraw.radialgradient(cx=None, cy=None, r=None, fx=None, fy=None, id=None, **args)

	Bases: SVGdraw.SVGelement

rg=radialgradient(cx,cy,r,fx,fy,id,**args)

defines a radial gradient using a outer circle which are defined by a cx,cy and r and by using a focalpoint.
stop elements van be added to define the gradient colors.






	
class SVGdraw.stop(offset, stop_color=None, **args)

	Bases: SVGdraw.SVGelement

st=stop(offset,stop_color,**args)

Puts a stop color at the specified radius






	
class SVGdraw.style(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

st=style(type,cdata=None,**args)

Add a CDATA element to this element for defing in line stylesheets etc..






	
class SVGdraw.image(url, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

im=image(url,width,height,x,y,**args)

adds an image to the drawing. Supported formats are .png, .jpg and .svg.






	
class SVGdraw.cursor(url, **args)

	Bases: SVGdraw.SVGelement

c=cursor(url,**args)

defines a custom cursor for a element or a drawing






	
class SVGdraw.marker(id=None, viewBox=None, refx=None, refy=None, markerWidth=None, markerHeight=None, **args)

	Bases: SVGdraw.SVGelement

m=marker(id,viewbox,refX,refY,markerWidth,markerHeight,**args)

defines a marker which can be used as an endpoint for a line or other pathtypes
add an element to it which should be used as a marker.






	
class SVGdraw.group(id=None, **args)

	Bases: SVGdraw.SVGelement

g=group(id,**args)

a group is defined by an id and is used to contain elements
g.addElement(SVGelement)






	
class SVGdraw.symbol(id=None, viewBox=None, **args)

	Bases: SVGdraw.SVGelement

sy=symbol(id,viewbox,**args)

defines a symbol which can be used on different places in your graph using
the use element. A symbol is not rendered but you can use ‘use’ elements to
display it by referencing its id.
sy.addElement(SVGelement)






	
class SVGdraw.defs(**args)

	Bases: SVGdraw.SVGelement

d=defs(**args)

container for defining elements






	
class SVGdraw.switch(**args)

	Bases: SVGdraw.SVGelement

sw=switch(**args)

Elements added to a switch element which are “switched” by the attributes
requiredFeatures, requiredExtensions and systemLanguage.
Refer to the SVG specification for details.






	
class SVGdraw.use(link, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

u=use(link,x,y,width,height,``**args``)

references a symbol by linking to its id and its position, height and width






	
class SVGdraw.link(link='', **args)

	Bases: SVGdraw.SVGelement

a=link(url,``**args``)

a link  is defined by a hyperlink. add elements which have to be linked
a.addElement(SVGelement)






	
class SVGdraw.view(id=None, **args)

	Bases: SVGdraw.SVGelement

v=view(id,``**args``)

a view can be used to create a view with different attributes






	
class SVGdraw.script(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

sc=script(type,type,cdata,``**args``)

adds a script element which contains CDATA to the SVG drawing






	
class SVGdraw.animate(attribute, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

an=animate(attribute,from,to,during,``**args``)

animates an attribute.






	
class SVGdraw.animateMotion(pathdata, dur, **args)

	Bases: SVGdraw.SVGelement

an=animateMotion(pathdata,dur,``**args``)

animates a SVGelement over the given path in dur seconds






	
class SVGdraw.animateTransform(type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

antr=animateTransform(type,from,to,dur,``**args``)

transform an element from and to a value.






	
class SVGdraw.animateColor(attribute, type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

ac=animateColor(attribute,type,from,to,dur,``**args``)

Animates the color of a element






	
class SVGdraw.set(attribute, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

st=set(attribute,to,during,``**args``)

sets an attribute to a value for a






	
class SVGdraw.svg(viewBox=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

s=svg(viewbox,width,height,``**args``)

a svg or element is the root of a drawing add all elements to a svg element.
You can have different svg elements in one svg file
s.addElement(SVGelement)

eg
d=drawing()
s=svg((0,0,100,100),’100%’,’100%’)
c=circle(50,50,20)
s.addElement(c)
d.setSVG(s)
d.toXml()






	
class SVGdraw.drawing

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

d=drawing()

this is the actual SVG document. It needs a svg element as a root.
Use the addSVG method to set the svg to the root. Use the toXml method to write the SVG
source to the screen or to a file
d=drawing()
d.addSVG(svg)
d.toXml(optionalfilename)








            

          

      

      

    

  

  
    
    

    RateEstimation.py - utilities for computing rate estimates for codon models.
    

    

    

    
 
  

    
      
          
            
  
RateEstimation.py - utilities for computing rate estimates for codon models.


	Tags

	Python






	
RateEstimation.evaluateCodonPair(codon1, codon2)

	evaluate differences between codon pair.






	
RateEstimation.countSubstitutions(pi, Q)

	count substitituions given a matrix Q and frequencies pi.






	
RateEstimation.initializeQMatrix(codons)

	get an initialized Q matrix.






	
RateEstimation.getQMatrix(pi, Rsi, Rsv, Rni, Rnv)

	build a q matrix.

Diagonal elements are set to the negative of the row sums.
The matrix is normalized such that trace of the matrix is -1.






	
RateEstimation.getRateMatrix(trained_model, terminals=None)

	return a rate matrix from an xrate grammar.


	terminals: return rate matrix and frequencies for these
	terminals. If none are given, a dictionaries of
matrices and frequencies are returned.










	
RateEstimation.setFrequencies(model, mali, prefix='')

	set frequencies in a model according to those observed in data.

prefix: prefix for rate parameters.

Frequencies are labelled:
pa0, pc0, …, pa1, pc1, …, pa2, pc2, …






	
RateEstimation.getDistanceGTR(pi, matrix)

	obtain distance from a GTR model.
see Felsenstein 1994, pp 209








            

          

      

      

    

  

  
    
    

    Glossary
    

    

    

    
 
  

    
      
          
            
  
Glossary


File formats


	yaml
	Language to serialize objects. Used in the CGAT testing
framework. (YAML [http://en.wikipedia.org/wiki/YAML]).



	bam
	Format to store genomic alignments in a compressed format.
(BAM [http://samtools.sourceforge.net/]).



	bed
	File containing genomic intervals.
(BED [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]).



	vcf
	Variant call format [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41].



	gtf
	General transfer format [http://www.ensembl.org/info/website/upload/gff.html].
Format to store genes and transcripts.



	gff
	General feature format [http://www.ensembl.org/info/website/upload/gff.html].



	bigwig
	Compressed format for displaying numerical values across
genomic ranges (BIGWIG [https://genome.ucsc.edu/goldenPath/help/bigWig.html]).



	fasta
	Sequence format.



	wiggle
	Format for displaying numerical values across genomic
ranges (Wiggle [https://genome.ucsc.edu/goldenPath/help/wiggle.html]).



	psl
	Genomic alignment format. The format is described in detail
(PSL [https://genome.ucsc.edu/FAQ/FAQformat.html#format2].



	sam
	Format to store genomic alignments
(SAM [http://samtools.sourceforge.net/]).



	gdl
	gdl



	tsv
	Tab separated values. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

# This is a comment
gene_id       length
gene1 1000
gene2 2000
# Another comment







	svg
	pass



	edge list
	pass



	fastq
	Sequence format containing quality scores, more background is
here [http://en.wikipedia.org/wiki/FASTQ_format]



	sra
	sra



	axt
	axt



	agp
	AGP format [https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/]



	rdf
	Resource description framework [http://en.wikipedia.org/wiki/Resource_Description_Framework]







Other terms


	test directory
	Directory that contains the test.yaml, input and
reference files for testing scripts.



	experiment
	experiment



	replicate
	replicate



	graph
	graph



	track
	track



	graph
	graph



	submit host
	pass



	execution host
	pass



	edge list
	pass



	task
	pass



	sphinxreport
	sphinxreport



	query
	pass



	target
	pass



	code directory
	pass



	go
	pass



	goslim
	pass



	fastq
	pass



	tss
	Transcription start site



	production pipeline
	A pipeline that performs common tasks on a certain type of
data. The idea of a production pipeline is to provide common
preprocessing of data and a first look. A project
pipeline might then take data from one or more
production pipeline to glean biological insight.



	project pipeline
	A pipeline that is project specific. Usually code is developed
first inside a project pipeline. When it becomes generally
useful, it may be refactored into a production pipeline.



	stdin
	Unix standard input. Most CGAT tools read data from stdin.



	stdout
	Unix standard output. Most CGAT tools output data to stdout.



	stderr
	Unix standard error. This is where errors go.



	loglevel
	Verbosity of logging information. The logging level can be
determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.









            

          

      

      

    

  

  
    
    

    Dependency graph
    

    

    

    
 
  

    
      
          
            
  
Dependency graph

This page contains a graph visualization of the dependencies
within the CGAT code collection (including the CGAT pipelines).
Scripts, modules and pipelines are coloured differently.


     



            

          

      

      

    

  

  
    
    

    Release Notes
    

    

    

    
 
  

    
      
          
            
  
Release Notes

Notes on each release are below.


Release 0.4.0


	contributions by Genomics PLC ; https://github.com/cgat-developers/cgat-apps/pull/2


	update installation and conda environments ;  https://github.com/cgat-developers/cgat-apps/pull/4


	updated conda environments and README ; https://github.com/cgat-developers/cgat-apps/pull/5


	update conda from 4.3 to 4.5 (solving “CXXABI_1.3.9 not found” error ; https://github.com/ContinuumIO/anaconda-issues/issues/5191) ; https://github.com/cgat-developers/cgat-apps/compare/b1bf0298f984…1f3ebb10ec9b [https://github.com/cgat-developers/cgat-apps/compare/b1bf0298f984...1f3ebb10ec9b]


	new way of activating conda environments ; https://github.com/cgat-developers/cgat-apps/pull/9








            

          

      

      

    

  

  
    
    

    Contributing to CGAT code
    

    

    

    
 
  

    
      
          
            
  
Contributing to CGAT code

We encourage everyone who uses parts of the CGAT code collection to
contribute. Contributions can take many forms: bugreports, bugfixes,
new scripts and pipelines, documentation, tests, etc. All
contributions are welcome.


Checklist for new scripts/modules

Before adding a new scripts to the repository, please check if the
following are true:


	The script performs a non-trivial task. If a one-line command line
entry using standard unix commands can give the same effect, avoid
adding a script to the repository.


	The script has a clear purpose. Scripts should follow the
unix philosophy [http://en.wikipedia.org/wiki/Unix_philosophy].
They should concentrate on one task and do it well. Ideally,
the major input and output can be read from and written to standard
input and standard output, respectively.


	The script follows the naming convention of cgat.tools.


	The scripts follows the Style Guide.


	The script implements the -h/--help options. Ideally, the
script has been derived from scripts/cgat_script_template.py.


	The script can be imported. Ideally, it imports without performing
any actions or writing output.


	The script is well documented and the documentation has been added
to the CGAT documentation. There should be an entry in
doc/scripts.rst and a file
doc/scripts/newscript.py.


	The script has at least one test case added to tests - and
the test works (see Testing).






Building extensions

Using pyximport [http://www.prescod.net/pyximport/], it is (relatively) straight-forward to add optimized
C-code to python scripts and, for example, access pysam internals and
the underlying samtools library. See for example Purpose.

To add an extension, the following needs to be in place:


	The main script (scripts/bam2stats.py). The important lines
in this script are:

try:
    import pyximport
    pyximport.install()
    import _bam2stats
except ImportError:
    import CGAT._bam2stats as _bam2stats





The snippet first attempts to build and import the extension by
setting up pyximport [http://www.prescod.net/pyximport/] and then importing the cython module as
_bam2stats.  In case this fails, as is the case for an
installed code, it looks for a pre-built extension (by
setup.py) in the CGAT pacakge.



	The cython implementation _bam2stats.pyx. This script
imports the pysam API via:

from csamtools cimport *





This statement imports, amongst others, AlignedRead into
the namespace. Speed can be gained from declaring variables. For
example, to efficiently iterate over a file, an
AlignedRead object is declared:

# loop over samfile
cdef AlignedRead read
for read in samfile:
    ...







	A pyxbld providing pyximport [http://www.prescod.net/pyximport/] with build information.
Required are the locations of the samtools and pysam header
libraries of a source installation of pysam plus the
csamtools.so shared library. For example:

def make_ext(modname, pyxfilename):
    from distutils.extension import Extension
    import pysam, os
    dirname = os.path.dirname( pysam.__file__ )[:-len("pysam")]
    return Extension(name = modname,
                     sources=[pyxfilename],
                     extra_link_args=[ os.path.join( dirname,
                            "csamtools.so")],
                     include_dirs =  pysam.get_include(),
                     define_macros = pysam.get_defines() )









If the script bam2stats.py is called the first time,
pyximport [http://www.prescod.net/pyximport/] will compile the cython [http://cython.org/] extension _bam2stats.pyx
and make it available to the script. Compilation requires a working
compiler and cython [http://cython.org/] installation.  Each time _bam2stats.pyx
is modified, a new compilation will take place.

pyximport [http://www.prescod.net/pyximport/] comes with cython [http://cython.org/].



Writing recipes

Recipes are short use cases demonstrating the use of one or more
CGAT utilities to address a specific problem.

Recipes should be written as ipython [http://ipython.org/] notebooks. The recipe notebooks
are stored in the recipes directory in the repository. Each
recipe is within its individual directory.  This minimizes
interference between each document, but also means that currently each
notebook needs a separate notebook server to be developped.

To build all recipes, type:

cd recipes
make html
make clean





This will build html files that are deposited in the docs directory.

The last cleaning up step is important in order to remove large files created
during the notebook execution.


Note

The commands above require the runipy python module. To install,
type:

pip install runipy







Data for recipes can be made available in www.cgat.org/downloads/public/cgat/recipes.
Ideally, recipes should make use of publicly available data sets such
as ENCODE.

Attempt to add a plot to the end of a recipe, using
R commands to create the plot within the notebook.



Writing pipelines

Best practice for CGAT pipelines:


	All non-trivial code should be extracted to modules or scripts.


	Modules should not access PARAMS dictionary directly, but
parameters should be passed to the function.


	Important processing steps where different external tools could
potentially be employed the design of the module classes should be
carefully considered to ensure consistent input and output file
formats for different tools. PipelineMapping provides a good
example for this.


	All production pipelines should include tests for consistency which
can be run automatically.


	Where appropriate pipelines should include a small test dataset
with published results for comparison. This dataset can be run on
each pipeline run and included in the pipeline report where it can
be used as a pipeline control.


	Periodic code review meetings where interested parties can agree of
major changes to production pipelines and associated modules – to
be arranged as required.


	The best way to manage pipeline improvements is by individuals
using pipelines taking responsibility for incremental
improvement. As best practice fellows should announce plans to
modify particular pipelines and modules on the CGAT members list to
avoid duplication of effort. Fellows should log the changes that
they make in a change log and document both modules and pipelines
in detail.


	Add a section with Requirements to all pipeline scripts and tools.
Only add them in files where the actual dependency arises, see
<no title>.








            

          

      

      

    

  

  
    
    

    Testing
    

    

    

    
 
  

    
      
          
            
  
Testing

This module describes the implementation of tests for the CGAT
code collection. The CGAT testing includes


	Regression testing of CGAT scripts


	Testing CGAT code for style conformance to pep8


	Testing CGAT code to be importable


	Unit testing of CGAT modules





Regression testing of scripts

Scripts are regression tested by comparing the expected output with
the latest output. The tests are implemented in the script
test_scripts.py.

This script collects tests from subdirectories in the tests
directory. Each test is named by the name of the script it tests.


Adding a new test manually

To add a new test for a CGAT script, create a new test
directory in the directory tests. The name of the test
directory has to correspond to the name of the script the tests will
tested.

In this directory, create a file called tests.yaml. This file is
in yaml format, a simple text-based format to describe nested data
structures.

The tests.yaml file contains the descriptions of the
individual tests to run. Each test is a separate data structure in
this file. The fields are:


	options
	Command line options for running the test. If you need to
provide additional files as input, use the %DIR% place
holder for the test directory.



	stdin
	Filename of file to use as stdin to the script. If no stdin is
required, set to null or omit.



	outputs
	A list of output files obtained by running the script that
should be compared to the list of files in references.
stdout signifies the standard output.



	references
	A list of expected output files. The order of outputs and
references should be the same. The reference files are
expected to be found in the directory test directory
and thus need not prefixed with a directory place holder.



	description
	A description of test.





To illustrate, we will be creating tests for the scripts
fasta2counts.py. First we create the test directory
tests/fasta2counts.py. Next we create a file
tests/fasta2counts.py/tests.yaml with the following content:

basic_test:
    outputs: [stdout]
    stdin: null
    references: [test1.tsv]
    options: --genome-file=<DIR>/small_genome





basic_test is the name of the test. There is no standard input
and the output of the script goes to stdout. Stdout will be compared to
the file test1.tsv. The script requires the --genome-file
option, which we supply in the options field. The <DIR> prefix
will be expanded to the directory that contains the file
tests.yaml.

Finally, we create the required input and reference files in the
test directory. Our directory structure looks thus:

|___tests
  |___fasta2counts.py
  | |___small_genome.fasta
  | |___small_genome.idx
  | |___test1.tsv
  | |___tests.yaml





Multiple tests per script can be defined by adding additional data structures in
the tests.yaml file.

Please write abundant tests, but keep test data to a minimum. Thus,
instead of running on a large bam file, create stripped down versions
containing only relevant data that is sufficient for the test at hand.

Re-use test data as much as possible. Some
generic test data used by multiple tests is in the tests/data
directory.



Creating a test

The script tests/setup_test.py can be used to set up
a testing stub. For example:

python tests/setup_test.py scripts/bam2bam.py





will add a new test for the script bam2bam.py.

The script will create a new testing directory for each script passed
on the command line and create a simple tests.yaml file. The
basic test will simply call a script to check if starts without error
and returns a version string.



Running tests

The CGAT code collection runs both under nose or py.test. In order to
run the tests on CGAT scripts under the nose framework, type:

nosetests tests/test_scripts.py





In order to get more information, type:

nosetests -v tests/test_scripts.py





To run individual tests, edit the file
tests/test_scripts.yaml. In order to restrict testing to
a single script, for example beds2counts.py, add the following:

restrict:
      regex: beds2counts.py





To run the tests using py.test, type:

py.test tests/test_scripts.py








Testing for style

All of CGAT python code are tested for pep8 [http://legacy.python.org/dev/peps/pep-0008/] conformance using the
pep8 tools. Not all pep8 rules are enforced, though we aim for
increasing compatibility with pep8. Please see also the
Style Guide.

The testing is controlled by the script test_style.py.
In order to run the tests, type:

nosetests tests/test_scripts.py





We have also added a test that will scan all the command line options
used in CGAT script against a white- and black-list of
acceptable/unacceptable option names. The purpose of this test is to
ensure consistency between scripts. To run this test, type:

nosetests tests/test_commandline.py





This test is based on a list of acceptable/unacceptable options in
tests/option_list.tsv that is within the repository. The list
has been created by the script cgat_get_option_list.py and
been manually annotated. Errors are flagged if a deprecated option
is used in a script or an unregistered option is encountered. To
update option list, type:

python scripts/cgat_get_option_list.py --in-place --options-tsv-file=tests/option_list.tsv







Testing for import

In order for documentation to be built or scripts to be
usable by the cgat frontend, scripts need to be importable
from anywhere. Importability might fail if a script or module
executes statements on improt or rely reading from input or
configuration files that are not present or have non-sensical
values.

The testing is controlled by the script test_style.py.
In order to run the tests, type:

nosetests tests/test_import.py







Testing modules

There are some unit tests for specific functions in modules, but
a testing regime has not been formalized.



Code coverage

Code coverage for modules can be computed if the
python coverage [https://pypi.python.org/pypi/coverage] module has
been installed. To compute coverage, use:

nosetests --with-coverage --cover-package=CGAT --cover-package=scripts tests/test_scripts.py





or using py.test:

py.test -s tests/test_scripts.py --cov=`pwd` >& out









            

          

      

      

    

  

  
    
    

    Style Guide
    

    

    

    
 
  

    
      
          
            
  
Style Guide


Coding style

This style guide lays down coding conventions in the CGAT repository.
For new scripts, follow the guidelines below.

As the repository has grown over years and several people contributed,
the style between scripts can vary. For older scripts, follow the style within a
script/module. If you want to apply the newer style, make consistent
changes across the script.

In general, we want to adhere to the following conventions:



	Variable names are lower case throughout with underscores to
separate words, such as peaks_in_interval = 0


	
	Function names start with a lower case character and a
	verb. Additional words start in upper case, such as
doSomethingWithData()







	
	Class names start with an upper case character, additional words
	start again in upper case, such as class AFancyClass():







	
	Class methods follow the same convention as functions, such as
	self.calculateFactor()







	
	Class attributes follow the same convention as variables, such
	as self.factor







	
	Global variables - in the rare cases they are used, are upper case
	throughout such as DEBUG=False







	
	Module names should start with an uppercase letter, for example,
	TreeTools.py in order to distinguish them from built-in
and third-party python modules.







	Script names are lower-case throughout with underscores to
separate words, for example, bam2geneprofile.py or
join_table.py.


	Cython extensions to scripts (via pyximport) should be put
into the script name starting with an underscore. For example,
The extensions to bam2geneprofile.py are in
_bam2geneprofile.pyx.







For new scripts, use the template script_template.py.

The general rule is to write easily readable and maintainable
code. Thus, please



	document code liberally and accurately


	
	make use of whitespaces and line-breaks to break long statements
	into easily readable statements.












In case of uncertainty, follow the python style guides as much as
possible. The relevant documents are:



	PEP0008 - Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/]


	PEP0257 - Docstring Conventions [http://www.python.org/dev/peps/pep-0257/]







For documenting CGAT code, we follow the conventions for documenting
python code:



	Python Developer’s guide [http://docs.python.org/devguide/documenting.html]







For writing doc-strings, we use the numpy guide:



	A guide to Numpy/scipy documentation [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]







See here [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html]
for an example.

In terms of writing scripts, we follow the following conventions:



	Each script should define the -h and --help options to
give command line help usage.


	For tabular output, scripts should output tsv formatted
tables. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

# This is a comment
gene_id length
gene1   1000
gene2   2000
# Another comment







	Scripts should follow the
unix philosophy [http://en.wikipedia.org/wiki/Unix_philosophy].
They should concentrate on one task and do it well. Ideally,
the major input and output can be read from and written to standard
input and standard output, respectively.


	The names of scripts should be meaningful. Most of our scripts
perform data transformation of one kind of another, these are
often called a2b.py. The distinctions can be subtle.
Examples are:


	gtf2gtf.py - manipulate transcript models
	Input is gtf, output is gtf. This script
manipulates gene sets (filtering, merging, …).



	gtf2gff.py - convert a transcript set to genomic features
	Input is gtf, output is gff. This script
takes gene sets and changes the hierarchical description
within a gtf file to the flat description of features
in a gff file. For example, this script can define
gene territories, regulatory domains or genomic annotations
based on a gene set.



	bed2gff.py - convert bed to gff/gtf
	Input is bed, output is gff. As both
formats describe intervals in the genome, this script
basically does a conversion between the two formats.





Quite a few scripts contain the 2table or 2stats. These
compute, respectively, properties or summary statistics for
entries in a file. For example:


	<no title>
	Input is gtf. For each gene or transcript, compute
selected properties. If there are 10,000 genes in the input,
the output table will contain 10,000 rows.



	gff2stats.py - count features, etc. in gff file
	Input is gff. Compute summary statistics across
all features in the file. Here, aggregate sizes or similar
by feature type or name per chromosome. No matter if there
are 10,000 or 100,000 interval is the input, the output
will be have the same number of rows.














Where to put code

Different parts of the code base go into separate directories.


	Scripts
	Scripts are python code that contains a main() function and
are intended to be executed. Scripts go into the directory
/scripts



	Modules
	Modules contain supporting code and are imported by scripts or
other modules. Modules go into the directory /CGAT.



	Pipelines
	Pipeline scripts and modules go into the directory /CGATPipelines.







Pipelines

All components of a pipeline should go into the CGATPipelines
directory. The basic layout of a pipeline is:

CGATPipelines/pipeline_example.py
             /PipelineExample.py
             /PipelineExample.R
             /pipeline_example/pipeline.ini
                              /conf.py
                              /sphinxreport.ini






	pipeline_example.py
	The main pipeline code. Pipelines start with the word pipeline
and follow the conventions for script names, all lower case with
underscores separating words.



	pipeline_example/pipeline.ini
	Default values for pipeline configuration values.



	pipeline_example/conf.py
	Configuration script for sphinxreport.



	pipeline_example/sphinxreport.ini
	Configuration script for sphinxreport.



	pipeline_docs/pipeline_example
	Sphinxreport for pipeline.



	PipelineExample.py
	Python utility methods and classes specific to this pipeline. Once
methods and classes are shared between pipelines, consider moving
them to a separate module.



	PipelineExample.R
	R utility functions specific to this pipeline.






	Make sure that the pipeline.ini file exists and contains example/default
values with annotation.


	Make sure that the pipeline can be imported from any directory,
especially those not containing any data files or configuration
files. This is important for the documentation of the pipeline
to be built.






Other guidelines


	Only add source code and required data to the repository. Do
not add .pyc files, backup files created by your editor or other
files.


	In order to build documentation, each script, module and pipeline needs to
be importable. Thus, make sure that when your pipeline depends on
specific files, it does not fail when imported but not executed.


	There is a style guide for naming script options based on 5
groups.  These are designed to increase clarity and familiarity
across the script collection.






Script options

The purpose of this section of the style guide is to standardise many
of the common options that the CGAT script collection uses.  This will
add transparency and improve user-friendliness by adding a level of
familiarity across scripts.

There are four option groups defined in the guide.  Not all options
will fit into one of these as many options are specific to a script.
This guide will also be a useful reference for new script development
by providing a common framework.

The general structure for option names is multiple parts with parts
separated by -. Generally, aim to have the most significant bit
first in the option as option names can be shortened on the command
line if they are unambiguous. For example, --annotation-gtf-file
can be abbreviated as --annotation-gtf, --annotation, etc.

Single-part options such as --colours are permitted if they are
unambiguous in the context of the script.

In general single letter (-a, -g, …) type options can be
used for very common options, but every option should have a long name
and use of long names is preferred in pipelines. If possible, use
short letters that are consistent with “related” unix commands.

Option nomenclature that does not fit into one of the below groups
should be explicit.  For instance use --output-with-value instead
of --with-value.


	Option groups:
	option components in ‘[]’ are variable


	files:

The file options support both input and ancillary files for scripts.  Some
scripts require multiple files of the same format.  In these instances
[purpose] differentiates the different files within the script.
--[purpose]-[format]-file=[file] e.g. --annotation-gtf-file
or --bam-file or --exons-gtf-file.



	actions:

Actions denote the central methods a script applies to the data
set. Some scripts might only be able to apply a single action to a
data set, while others might allow a sequence of actions to be
performed. Scripts that support multiple actions should use the
--methods=[action1, action2,...], for example
--methods=sort-by-name,filter-by-length.
Scripts that only
support a single action use --method=[action], for example:
--method=select-longest-transcript.

Arguments that are relevant for a particular action should be
easily associated with the action. In the example above, the
minimum length could be given as --filter-min-length.

Do not hesitate to make arguments as explicit as possible.
Consider also using:
--method=filter-by-sequence-length and --filter-min-sequence-length.



	parameters:

Parameters are provided to scripts with a specific purpose.  To
make these as explicit as possible these also conform to the
three-part naming convention.  Very common is to set
minimum/maximum values. For these, follow a
--[object]-[attribute]-[stat]=[value] convention, e.g.,
--insert-size-min=100 or --insert-size-std=20.



	outputs:

The prinicipal output of a script is generally fed to standard
output. Scripts that create multiple output files should define
them using the generic --output-filename-pattern. Any %s
pattern will be substituted inside the script with a section
name. Optionally, it might also append a suffix for the file
type. For example a script called with
--output-filename-pattern="test_%s" might create files such as
test_plot.png, test_removed.tsv for the sections plot and
removed.

In order to facilicate the incorporation of multiple-output
scripts into pipelines, scripts should permit explicit
labeling of output files such as --output-filename-<section>
where section corresponds to the sections used in the script. In
the example above, the script should also accept options called
--output-filename-plot and --output-filename-removed.


Note

TODO: This can be implemented generically in Experiment.py













Documentation


Writing doc-strings

Functions should be documented through their doc-string using
restructured text. For example:

    def computeValue(name, method, accuracy=2):

        :param name: The name to use.
        :type name: str.
        :param method: method to use.
        :type state: choice of ('empirical', 'parametric')
        :param accuracy:
        :type accuracy: integer
        :returns:  int -- the value
        :raises: AttributeError, KeyError

Writing documentation for scripts
---------------------------------

There is a minimum standard for documentation to maintain clarity of
tools and code.  The documentation for any given script should follow
the basic outline in :doc:`scripts/cgat_script_template`.

Three main headers exist:

`Purpose`
   Describe the overall purpose and function of the script and the
   input and output formats.  This can be extensive and include
   sub-headers to further describe script functionality.  For
   example::

       Purpose
       -------

       This script takes a :term:`gtf` formatted file and computes
       meta-gene profiles over various annotations derived from the
       :term:`gtf` file.

       A meta-gene profile is an abstract genomic entity over which
       reads stored in a :term:`bam` formatted file have been
       counted. A meta-gene might be an idealized eukaryotic gene
       (upstream, exonic sequence, downstream) or any other genomic
       landmark of interest such as transcription start sites.






	Usage
	Describe example use cases for the script with one or more
options.  In addition provide the head of both example input and
example output files.  Example input and output:

Usage
-----
    samtools view example.bam

    READ1    163    1     13040   15      76M     =       13183   219     ...
    READ1    83     1     13183   7       76M     =       13040   -219    ...
    READ2    147    1     13207   0       76M     =       13120   -163    ...

    python bam2bed.py example.bam

    1       13039   13115   READ1     15      +
    1       13119   13195   READ2     0       +
    1       13182   13258   READ1     7       -
    1       13206   13282   READ2     0       -





Example usage:

python example_script.py
      --infile=example.bam
      --option1=choice
      --method=method1









Options


Describe all of the options for the script.  If necessary provide
extensive detail of the methods of each option and how they are
combined to provide the intended functionality of the script.
This should include all choice for options with a verbose
description of what that choice does.  For example:

Profiles
--------
Different profiles are accessible through the ``--method`` option. Multiple
methods can be applied at the same time. While ``upstream`` and ``downstream``
typically have a fixed size, the other regions such as ``CDS``, ``UTR`` will be
scaled to a common size.

utrprofile
    UPSTREAM - UTR5 - CDS - UTR3 - DOWNSTREAM
    gene models with UTR. Separate the coding section from the non-coding part.








There is a fourth template-specific header; the command line options
that are automatically generated for every CGAT script:


	Command line options
	These are automatically generated from
cgat_script_template.py - template for cgat scripts and detail each option
specified within the script.  No further details need to be added
to this section.





In addition, please pay attention to the following:


	Declare input data types for genomic data sets in optparse using
the metavar keyword. For example:

parser.add_option( "--extra-intervals", dest = "extra_intervals",
                metavar="bed", help = "..." )





Setting the type permits the script to be integrated into workflow
systems such as galaxy [https://main.g2.bx.psu.edu/].



	Please provide a meaningful example in the command line help (see above for
minimum requirements).


	Be verbose. Something that is not documented within a script
will not be used.


	Add meaningful tags to your scripts (:Tags:) so that they can be grouped into
categories. Please choose from the following controlled
vocabulary. If needed, additional terms can be added to this list.


	Broad Themes



	Genomics


	NGS


	MultipleAlignment


	GenomeAlignment


	Intervals


	Genesets


	Sequences


	Variants


	Protein









	Formats



	BAM


	BED


	GFF


	GTF


	FASTA


	FASTQ


	WIGGLE


	PSL


	CHAIN









	Actions



	Summary - summarizing entities within a file, such as
counting the number of intervals within a file, etc.


	Annotation - annotating individual entities within a file,
such as adding length, composition, etc. to intervals.


	Comparison - comparing the same type of entities, such as
overlapping to sets of intervals.


	Conversion - converting between different formats for the
similar types of objects (Intervals in gff/bed format).


	Transformation - transforming one entity into another, such
as transforming intervals into sequences.


	Manipulation - changing entities within a file, such as
filtering sequences.




















            

          

      

      

    

  

  
    
    

    Documentation
    

    

    

    
 
  

    
      
          
            
  
Documentation


Overview

cgat.tools.and modules use sphinx [http://sphinx-doc.org/] for documentation. The philosophy
is to maintain documentation and code together. Thus, most
documentation will be kept inside the actual scripts and modules,
supported by overview documents explaining usage and higher level
concepts. See the Style Guide on how to write documentation.



Building the documentation

CGAT’s documentation lives in the doc directory of the
repository. To build the documentation, enter the doc
directory and type:

make html





The output will be in the directory _build/html.


Note

Each script, module and pipeline needs to be importable,
i.e, the following must work:

python -c "import pipeline_mapping"





Especially in pipelines some care is necessary to avoid failing
with an error if no input or configuration files are present.



The page coverage page lists undocumented functions and
classes. To update this information, you must set the COMPUTE_COVERAGE
variable when building the documentation:

make html COMPUTE_COVERAGE=1







Writing documentation

sphinx [http://sphinx-doc.org/] documentation is written in Restructured Text [http://docutils.sourceforge.net/rst.html]. A useful
primer is here [http://sphinx-doc.org/rest.html].

Some specifics for the CGAT code base are:


	Refering to a separate script can be done using the :doc:
directive, for example:

:doc:`scripts/bed2summary`





Note that the path relative to the current directory needs to
be supplied.



	Glossary terms (:term:) are defined in
glossary.rst.






Adding documentation

In order to add a new script, module or pipeline to the documentation documement,
perform the following steps.

Here, we will be adding the script bed2summary.py to
the documentation.


	Create a file doc/scripts/bed2summary.rst with the
following contents:

.. automodule:: bed2summary

.. program-output:: python ../scripts/bed2summary.py --help





This will build the documentation within the bed2summary script
and add the command line help to the document.



	Add an entry to doc/scripts.rst. For example:

.. toctree::

   scripts/bed2summary





Please add your script to the toctree of an existing group.



	For scripts that are part of the CGAT code collection, also add an
entry into doc/CGATReference.rst.




Adding a module or pipeline is similar to adding a script, except that:


	the .rst file should be in doc/modules or
doc/pipelines, respectively.


	The entry needs to be added to modules.rst or
CGATPipelines.rst, respectively.


	no program-output is necessary.






Requisites

Building the documentation requires the following components:


	sphinx [http://sphinx-doc.org/]
	The documenation building system.



	sphinxcontrib-programoutput [https://pypi.python.org/pypi/sphinxcontrib-programoutput]
	Adding command line output to documenation.







Trouble-shooting

The build may fail with the following error:

ImportError: Building module CGAT.NCL.cnestedlist failed: ['ImportError: /ifs/home/XXX/.pyxbld/lib.linux-x86_64-2.7/CGAT/NCL/cnestedlist.so: undefined symbol: interval_iterator_alloc\n']





In this case, remove the directory /ifs/home/XXX/.pyxbld/ and
restart building the documentation:

rm -rf /ifs/home/andreas/.pyxbld/
make html









            

          

      

      

    

  

  
    
    

    Reference
    

    

    

    
 
  

    
      
          
            
  
Reference

This section describes the layout of the code repository and contains
the API reference to the complete contents of the code collection.


Repository layout

The repository contains the following directories:


	scripts
	Scripts in the code collection.



	CGAT
	Modules for code shared between scripts in the collection.



	doc
	The sphinx [http://sphinx-doc.org/] documentation of the code repository.



	tests
	Testing code



	recipes
	ipython [http://ipython.org/] notebook recipes and tutorials.



	galaxy
	scripts to hook the code collection into galaxy [https://main.g2.bx.psu.edu/].







API



	Scripts
	Genomics

	Visualization

	Sequences and rates

	Matrices and Tables

	Stats

	Tools

	Unsorted





	Modules
	CGAT generic toolboxes

	Genomics

	Data processing

	CGAT infrastructure





	Glossary
	File formats

	Other terms





	Dependency graph









            

          

      

      

    

  

  
    
    

    Scripts
    

    

    

    
 
  

    
      
          
            
  
Scripts

This document contains all the scripts for/by CGAT.
Scripts are written to be called from the command line.


Genomics



	bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes

	bed2bed - manipulate bed files

	bed2gff.py - convert bed to gff/gtf

	gff2bed.py - convert from gff/gtf to bed

	diff_gtf.py - compute overlap between multiple gtf files

	gff2psl.py - convert from gff to psl

	gff2coverage.py - compute genomic coverage of gff intervals

	gff2fasta.py - output sequences from genomic features

	gff2gff.py - manipulate gff files

	gff2histogram.py - compute histograms from intervals in gff or bed format

	gff2stats.py - count features, etc. in gff file

	gtf2gff.py - convert a transcript set to genomic features

	gtf2gtf.py - manipulate transcript models

	gtf2fasta.py - annotate genomic bases from a gene set

	bam2wiggle.py - convert bam to wig/bigwig file

	bed2annotator.py - convert bed to annotator format

	bed2graph.py - compute the overlap graph between two bed files

	chain2psl.py - convert a chain file to a psl file

	diff_bed.py - count differences between several bed files

	fasta2bed.py - segment sequences

	gff2table.py - compute features for intersection of two gff files







Visualization






Sequences and rates



	index_fasta.py - Index fasta formatted files

	diff_fasta.py - compare contents of two fasta files







Matrices and Tables



	csvs2csv.py - join tables

	csv2csv.py - operate on tables

	csv2db.py - upload table to database

	csv_cut.py - select columns from a table

	csv_intersection.py - intersect two tables

	csv_rename.py - rename columns in a table

	csv_set.py - set operations on a table

	cat_tables.py - concatenate tables

	table2table.py - operate on tables







Stats



	data2histogram.py - histogram data in a table







Tools


Cluster and jobs



	split_file.py - split a file into parts







Other



	cgat_script_template.py - template for cgat scripts








Unsorted



	bam2UniquePairs.py - filter/report uniquely mapped read pairs from a (bwa!) bam-file

	bam2bam.py - modify bam files

	bam2bed.py - convert bam formatted file to bed formatted file

	bam2fastq.py - output fastq files from a bam-file

	bam2peakshape.py - compute peak shape features from a bam-file

	Purpose

	Usage

	Documentation

	Command line options

	beds2counts - compute overlap stats between multiple bed files

	bed2fasta.py - get sequences from bed file

	bed2stats.py - summary of bed file contents

	beds2beds.py - decompose bed files

	combine_tables.py - join tables

	diff_chains.py - compare to chain formatted files

	fasta2variants.py - create sequence variants from a set of sequences

	fastq2fastq.py - manipulate fastq files

	fastq2table.py - compute stats on reads in fastq files

	genome_bed.py - Create a bed file tiling a genome from a fai file

	index2bed.py - convert indexed fasta file to bed file

	medip_merge_intervals.py - merge differentially methylated regions

	cgat_rebuild_extensions.py - rebuild all cython extensions

	vcf2vcf.py - manipulate vcf files

	vcfstats_sqlite.py - reformat output of vcf-stats for database loading

	bam_vs_bam.py - compute coverage correlation between bam files

	bam_vs_bed.py - count context that reads map to

	bam_vs_gtf.py - compare bam file against gene set

	diff_bam.py - compare multiple bam files against each other

	fasta2fasta.py - operate on sequences

	fasta2kmercontent.py

	fastas2fasta.py - concatenate sequences from multiple fasta files

	fastqs2fasta.py - interleave two fastq files

	fastqs2fastqs.py - manipulate (merge/reconcile) fastq files

	gtf2tsv.py - convert gtf file to a tab-separated table

	gtfs2tsv.py - compare two genesets

	rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates

	split_gff - split a gff file into chunks

	bams2bam.py - merge genomic and transcriptome mapped bamfiles

	bed.plot.py - create genomic snapshots using the IGV Viewer

	cgat2dot.py - create a graph between cgat scripts

	cgat_get_options.py - build a sorted list of all options used in scripts

	cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code

	csv_select.py - select rows from a table

	fastq2summary.py - compute summary stats for a fastq file

	fastqs2fastq.py - merge reads in fastq files

	gff32gtf.py - various methods for converting gff3 files to gtf

	script_template.py

	split_fasta.py

	transfac2transfac.py - filter transfac motif files

	wig2bed.py - convert densities to intervals









            

          

      

      

    

  

  
    
    

    bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes
    

    

    

    
 
  

    
      
          
            
  
bam2geneprofile.py - build meta-gene profile for a set of transcripts/genes


	Tags

	Genomics NGS Genesets Intervals GTF BAM Summary






Purpose

This script takes a gtf formatted file, a short reads
bam formatted file and computes meta-gene profiles over
various annotations derived from the gtf file.

A meta-gene profile is an abstract genomic entity over which reads
stored in a bam formatted file have been counted. A meta-gene
might be an idealized eukaryotic gene (upstream, exonic sequence,
downstream) or any other genomic landmark of interest such as
transcription start sites.

The script can be used to visualize binding profiles of a chromatin
mark in gene bodies, binding of transcription factors in promotors or
sequencing bias (e.g. 3’ bias) in RNA-Seq data.

This script is designed with a slight emphasis on RNA-Seq
datasets. For example, it takes care of spliced reads, by using the
CIGAR string in the BAM file to accurately define aligned bases (if
the –base-accurate is specified, currently this feature is turned off
by default for speed reasons).

Alternatively, for the purpose of visualizing binding profiles of
transcription factor ChIP-Seq without the need to use any genomic
annotations (ENSEMBL, or refseq), you may also consider using
bam2peakshape.py - compute peak shape features from a bam-file, which is designed with a slight emphasis on
Chip-Seq datasets. For example, bam2peakshape.py - compute peak shape features from a bam-file is able to center
the counting window to the summit of every individual peak.
bam2peakshape.py - compute peak shape features from a bam-file is also able to: (1) plot the control ChIP-Seq
library to enable side-by-side comparison; (2) randomize the given
regions to provide a semi-control.



Usage


Quick start examples

The following command will generate the gene profile plot similar to
Fig 1(a) in the published cgat paper, but using a test dataset that is
much smaller and simpler than the dataset used for publishing the cgat
paper.

python ./scripts/bam2geneprofile.py
    --bam-file=./tests/bam2geneprofile.py/multipleReadsSplicedOutAllIntronsAndSecondExon.bam
    --gtf-file=./tests/bam2geneprofile.py/onegeneWithoutAnyCDS.gtf.gz
    --method=geneprofile
    --reporter=gene





In the following, a slightly more involved example will use more
features of this script. The following command generate the gene
profile showing base accuracy of upstream (500bp), exons, introns and
downstream(500bp) of a gene model from some user supplied RNA-Seq data
and geneset.

python ./scripts/bam2geneprofile.py
    --bam-file=./rnaseq.bam
    --gtf-file=./geneset.gtf.gz
    --method=geneprofilewithintrons
    --reporter=gene
    --extension-upstream=500
    --resolution-upstream=500
    --extension-downstream=500
    --resolution-downstream=500





The output will contain read coverage over genes. The profile will
contain four separate segments:


	the upstream region of a gene ( set to be 500bp ),
(--extension-upstream=500).


	the transcribed region of a gene. The transcribed region of every gene will
be scaled to 1000 bp (default), shrinking longer transcripts and
expanding shorter transcripts.


	the intronic regions of a gene. These will be scaled to 1000b (default).


	the downstream region of a gene (set to be 500bp),
(--extension-downstream=500).






Detailed explaination

The bam2geneprofile.py script reads in a set of transcripts
from a gtf formatted file. For each transcript, overlapping
reads from the provided bam file are collected. The counts
within the transcript are then mapped onto the meta-gene structure and
counts are aggregated over all transcripts in the gtf file.

Bam files need to be sorted by coordinate and indexed.

A meta-gene structure has two components - regions of variable size,
such as exons, introns, etc, which nevertheless have a fixed start and
end coordinate in a transcript. The other component are regions of
fixed width, such a regions of a certain size upstream or downstream
of a landmark such as a transcription start site.

The size of the former class, regions of variable size, can be varied
with --resolution options. For example, the option
--resolution-upstream-utr=1000 will create a meta-gene with a
1000bp upstream UTR region. UTRs that are larger will be compressed,
and UTRs that are smaller, will be stretched to fit the 1000bp
meta-gene UTR region.

The size of fixed-width regions can be set with --extension
options. For example, the options --extension-upstream will set
the size of the uptsream extension region to 1000bp. Note that no
scaling is required when counting reads towards the fixed-width
meta-gene profile.

Type:

python bam2geneprofile.py --help





for command line help.




Options

The script provides a variety of different meta-gene structures i.e.
geneprofiles, selectable via using the option: (--method).


Profiles

Different profiles are accessible through the --method option. Multiple
methods can be applied at the same time. While upstream and downstream
typically have a fixed size, the other regions such as CDS, UTR will be
scaled to a common size.


	utrprofile
	UPSTREAM - UTR5 - CDS - UTR3 - DOWNSTREAM
gene models with UTR. Separate the coding section from the non-coding part.



	geneprofile
	UPSTREAM - EXON - DOWNSTREAM
simple exonic gene models



	geneprofilewithintrons
	UPSTREAM - EXON - INTRON - DOWNSTREAM

gene models containing also intronic sequence, only correct if
used with --use-base-accuracy option.



	separateexonprofile
	UPSTREAM - FIRST EXON - EXON - LAST EXON - DOWNSTREAM

gene models with the first and last exons separated out from all
other exons.  Only applicable to gene models with > 1 exons.



	separateexonprofilewithintrons
	UPSTREAM - FIRST EXON - EXON - INTRON - LAST EXON - DOWNSTREAM

gene models with first and last exons separated out, and includes
all introns together.  Excludes genes with < 2 exons and no introns.





geneprofileabsolutedistancefromthreeprimeend


UPSTREAM - EXON (absolute distance, see below) - INTRON (absolute
distance, see below) - DOWNSTREAM (the downstream of the exons)
region, the script counts over the mRNA transcript only, skipping
introns. Designed to visualize the 3 prime bias in RNASeq data,
only correct if used together with --use-base-accuracy option.

absolute distance: In order to to visualize the 3 prime bias,
genes are not supposed to be streched to equal length as it did in
all other counting methods. In this counting method, we first set
a fix length using
--extension-exons-absolute-distance-topolya, the script will
discard genes shorter than this fixed length. For genes (when all
the exons stitched together) longer than this fixed length, the
script will only count over this fixed length ( a absolute
distance ) from three prime end, instead of compress the longer
genes. Same goes for absolute distance intron counting.





	tssprofile
	UPSTREAM - DOWNSTREAM
transcription start/stop sites



	intervalprofile
	UPSTREAM - INTERVAL - DOWNSTREAM
Similar to geneprofile, but count over the complete span of the gene
(including introns).



	midpointprofile
	UPSTREAM  - DOWNSTREAM
aggregate over midpoint of gene model







Normalization

Normalization can be applied in two stages of the computation.


Count vector normalization

Before adding counts to the meta-gene profile, the profile for the
individual transcript can be normalized. Without normalization, highly
expressed genes will contribute more to the meta-gene profile than
lowly expressed genes.  Normalization can assure that each gene
contributes an equal amount.

Normalization is applied to the vector of read counts that is computed
for each transcript. Normalization can be applied for the whole
transcript (total) or on a per segment basis depending on the
counter. For example, in the gene counter, exons, upstream and
downstream segments can be normalized independently.

Counts can be normalized either by the maximum or the sum of all
counts in a segment or across the whole transcript. Normalization is
controlled with the command line option --normalize-trancript. Its
arguments are:


	none: no normalization


	sum: sum of counts within a region (exons, upstream, …).
The area under the curve will sum to 1 for each region.


	max: maximum count within a region (exons,upstream, …).


	total-sum: sum of counts across all regions. The area
under the curve will sum to 1 for
the complete transcript.


	total-max: maximum count across all regions.




The options above control the contribution of individual transcripts
to a meta-gene profile and are thus suited for example for RNA-Seq data.

The options above do not control for different read-depths or any
local biases. To compare meta-gene profiles between samples,
additional normalization is required.



Meta-gene profile normalization

To enable comparison between experiments, the meta-gene profile itself
can be normalized.  Normalization a profile can help comparing the
shapes of profiles between different experiments independent of the
number of reads or transcripts used in the construction of the
meta-gene profile.

Meta-gene profile normalization is controlled via the
--normalize-profile option. Possible normalization are:


	none: no normalization


	area: normalize such that the area under the meta-gene profile is 1.


	counts: normalize by number of features (genes,tss) that have been counted.


	background: normalize with background (see below).




A special normalization is activated with the background option.
Here, the counts at the left and right most regions are used to
estimate a background level for each transcript. The counts are then
divided by this background-level. The assumption is that the meta-gene
model is computed over a large enough area to include genomic
background.




Genes versus transcripts

The default is to collect reads on a per-transcript
level. Alternatively, the script can merge all transcripts of a gene
into a single virtual transcript. Note that this virtual transcript
might not be a biologically plausible transcript. It is usually better
to provide bam2geneprofile.py with a set of representative
transcripts per gene in order to avoid up-weighting genes with
multiple transcripts.



Control

If control files (chip-seq input tracks) are supplied, counts in the
control file can be used to compute a fold-change.



Bed and wiggle files

The densities can be computed from bed or wiggle
formatted files. If a bed formatted file is supplied, it must
be compressed with and indexed with tabix.


Note

Paired-endedness is ignored. Both ends of a paired-ended read are
treated individually.






Command line options



usage: bam2geneprofile [-h] [--version]
                       [-m {geneprofile,tssprofile,utrprofile,intervalprofile,midpointprofile,geneprofilewithintrons,geneprofileabsolutedistancefromthreeprimeend,separateexonprofile,separateexonprofilewithintrons}]
                       [-b BAM] [-c BAM] [-g GTF]
                       [--normalize-transcript {none,max,sum,total-max,total-sum}]
                       [--normalize-profile {all,none,area,counts,background}]
                       [-r {gene,transcript}] [-i SHIFTS] [-a] [-u]
                       [-e EXTENDS]
                       [--resolution-upstream RESOLUTION_UPSTREAM]
                       [--resolution-downstream RESOLUTION_DOWNSTREAM]
                       [--resolution-upstream-utr RESOLUTION_UPSTREAM_UTR]
                       [--resolution-downstream-utr RESOLUTION_DOWNSTREAM_UTR]
                       [--resolution-cds RESOLUTION_CDS]
                       [--resolution-first-exon RESOLUTION_FIRST]
                       [--resolution-last-exon RESOLUTION_LAST]
                       [--resolution-introns RESOLUTION_INTRONS]
                       [--resolution-exons-absolute-distance-topolya RESOLUTION_EXONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--resolution-introns-absolute-distance-topolya RESOLUTION_INTRONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-exons-absolute-distance-topolya EXTENSION_EXONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-introns-absolute-distance-topolya EXTENSION_INTRONS_ABSOLUTE_DISTANCE_TOPOLYA]
                       [--extension-upstream EXTENSION_UPSTREAM]
                       [--extension-downstream EXTENSION_DOWNSTREAM]
                       [--extension-inward EXTENSION_INWARD]
                       [--extension-outward EXTENSION_OUTWARD]
                       [--scale-flank-length SCALE_FLANKS]
                       [--control-factor CONTROL_FACTOR]
                       [--output-all-profiles]
                       [--counts-tsv-file INPUT_FILENAME_COUNTS]
                       [--background-region-bins BACKGROUND_REGION_BINS]
                       [--output-res RESOLUTION_IMAGES]
                       [--image-format IMAGE_FORMAT] [--timeit TIMEIT_FILE]
                       [--timeit-name TIMEIT_NAME] [--timeit-header]
                       [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?]
                       [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                       [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2geneprofile: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2bed - manipulate bed files
    

    

    

    
 
  

    
      
          
            
  
bed2bed - manipulate bed files


Purpose

This script provides various methods for merging (by position, by name
or by score), filtering and moving bed formatted intervals and
outputting the results as a bed file


	
This script provides several methods, each with a set of options

	




	
to control behavoir:

	




	
cgat.tools.bed2bed.merge()

	




	
+++++

	




	
Merge together overlapping or adjacent intervals. The basic

	




	
functionality is similar to bedtools merge, but with some additions:

	




	
\* Merging by name: specifying the --merge-by-name option will mean

	that only overlaping (or adjacent intervals) with the same value in
the 4th column of the bed will be merged






	
\* Removing overlapping intervals with inconsistent names: set the

	--remove-inconsistent-names option.






	
.. caution::

	Intervals of the same name will only be merged if they
are consecutive in the bed file.






	
\* Only output merged intervals: By specifiying the --merge-min-intervals=n

	options, only those intervals that were created by merging at least n
intervals together will be output






	
Intervals that are close but not overlapping can be merged by setting

	




	
--merge-distance to a non-zero value

	




	
cgat.tools.bed2bed.bins()

	




	
++++

	




	
Merges together overlapping or adjecent intervals only if they have

	




	
"similar" scores. Score similarity is assessed by creating a number of

	




	
score bins and assigning each interval to a bin. If two adjacent

	




	
intervals are in the same bin, the intervals are merged. Note that in

	




	
contrast to merge-by-name above, two intervals do not need to be

	




	
overlapping or within a certain distance to be merged.

	




	
There are several methods to create the bins:

	




	
\* equal-bases: Bins are created to that they contain the same number of bases.

	Specified by passing “equal-bases” to –binning-method. This is the default.






	
\* equal-intervals: Score bins are create so that each bin contains the

	same number of intervals. Specified by passing “equal-intervals” to
–binning-method.






	
\* equal-range: Score bins are created so that

	each bin covers the same fraction of the total range of
scores. Specified by passing “equal-range” to –binning-method.






	
\* bin-edges: Score binds can be specified by manually passing a comma

	seperated list of bin edges to –bin-edges.






	
The number of bins is specified by the --num-bins options, and the

	




	
default is 5.

	




	
cgat.tools.bed2bed.block()

	




	
+++++

	




	
Creates blocked bed12 outputs from a bed6, where intervals with the

	




	
same name are merged together to create a single bed12 entry.

	




	
.. Caution:: Input must be sorted so that entries of the same

	




	
name are together.

	




	
filter-genome

	




	
+++++++++++++

	




	
Removes intervals that are on unknown contigs or extend off the 3' or

	




	
5' end of the contig.  Requires a tab seperated input file to -g which

	




	
lists the contigs in the genome, plus their lengths.

	




	
sanitize-genome

	




	
+++++++++++++++

	




	
As above, but instead of removing intervals overlapping the ends of

	




	
contigs, truncates them.  Also removes empty intervals.

	




	
filter-names

	




	
++++++++++++

	




	
Output intervals whose names are in list of desired names. Names are

	




	
supplied as a file with one name on each line.

	




	
cgat.tools.bed2bed.shift()

	




	
+++++

	




	
Moves intervals by the specified amount, but will not allow them to be

	




	
shifted off the end of contigs. Thus if a shift will shift the start

	




	
of end of the contig, the interval is only moved as much as is

	




	
possible without doing this.

	




	
rename-chr

	




	
++++++++++

	




	
Renames chromosome names. Source and target names are supplied as a file

	




	
with two columns. Examples are available at:

	




	
https://github.com/dpryan79/ChromosomeMappings

	




	
Note that unmapped chromosomes are dropped from the output file.

	




	
Other options

	




	
+++++++++++++

	




	
-g/--genome-file, -b/--bam-file:

	the filter-genome, sanitize-genome and shift methods require a genome in
order to ensure they are not placing intervals outside the limits of
contigs. This genome can be supplied either as a samtools or cgat indexed
genome, or extracted from the header of a bam file.





Examples

Merge overlapping or adjectent peaks from a CHiP-seq experiment where the
intervals have the same name:


cat chip-peaks.bed | cgat bed2bed –method=merge –merge-by-name > chip-peaks-merged.bed




Merge adjected ChIP-seq peaks if their scores are in the same quartile of
all scores:


cat chip-peaks.bed | cgat bed2bed –method=bins –binning-method=equal-intervals –num-bins=4




Remove intervals that overlap the ends of a contig and those that are on a
non-standard contig. Take the input intervals from a file rather than stdin.
Note that hg19.fasta has been indexed with index_genome:


cgat bed2bed –method=filter-genome –genome-file=hg19.fasta -I chip-peaks.bed -O chip-peaks-sanitized.bed




Convert a bed file contain gene structures with one line per exon to a bed12
with linked block representing the gene structure. Note the transparent use
of compressed input and output files:


cgat bed2bed –method=block -I transcripts.bed.gz -O transcripts.blocked.bed.gz




Rename UCSC chromosomes to ENSEMBL.


cat ucsc.bed | cgat bed2bed –method=rename-chr –rename-chr-file=ucsc2ensembl.txt > ensembl.bed






Usage


cgat bed2bed –method=[METHOD] [OPTIONS]




Will read bed file from stdin and apply the specified method



Command line options



usage: bed2bed [-h]
               [-m {merge,filter-genome,bins,block,sanitize-genome,shift,extend,filter-names,rename-chr}]
               [--num-bins NUM_BINS] [--bin-edges BIN_EDGES]
               [--binning-method {equal-bases,equal-intervals,equal-range}]
               [--merge-distance MERGE_DISTANCE]
               [--merge-min-intervals MERGE_MIN_INTERVALS] [--merge-by-name]
               [--merge-and-resolve-blocks] [--merge-stranded]
               [--remove-inconsistent-names] [--offset OFFSET]
               [-g GENOME_FILE] [-b BAM_FILE] [--filter-names-file NAMES]
               [--rename-chr-file RENAME_CHR_FILE] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bed2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2gff.py - convert bed to gff/gtf
    

    

    

    
 
  

    
      
          
            
  
bed2gff.py - convert bed to gff/gtf


	Tags

	Genomics Intervals BED GFF Conversion






Purpose

This script converts a bed-formatted file to a gff or
gtf-formatted file.

It aims to populate the appropriate fields in the gff file
with columns in the bed file.

If --as-gtf is set and a name column in the bed file is
present, its contents will be set as gene_id and
transcript_id. Otherwise, a numeric gene_id or
transcript_id will be set according to --id-format.



Usage

Example:

# Preview input bed file
zcat tests/bed2gff.py/bed3/bed.gz | head
# Convert BED to GFF format
cgat bed2gff.py < tests/bed2gff.py/bed3/bed.gz > test1.gff
# View converted file (excluding logging information)
cat test1.gtf | grep -v "#" | head


















	chr1

	bed

	exon

	501

	1000

	.

	.

	.

	gene_id “None”; transcript_id “None”;



	chr1

	bed

	exon

	15001

	16000

	.

	.

	.

	gene_id “None”; transcript_id “None”;






Example:

# Convert BED to GTF format
cgat bed2gff.py --as-gtf < tests/bed2gff.py/bed3/bed.gz > test2.gtf
# View converted file (excluding logging information)
cat test2.gtf | grep -v "#" | head


















	chr1

	bed

	exon

	501

	1000

	.

	.

	.

	gene_id “00000001”; transcript_id “00000001”;



	chr1

	bed

	exon

	15001

	16000

	.

	.

	.

	gene_id “00000002”; transcript_id “00000002”;






Type:

cgat bed2gff.py --help





for command line help.



Command line options



usage: bed2gff [-h] [-a] [-f ID_FORMAT] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bed2gff: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2bed.py - convert from gff/gtf to bed
    

    

    

    
 
  

    
      
          
            
  
gff2bed.py - convert from gff/gtf to bed


	Tags

	Genomics Intervals GFF BED Conversion






Purpose

This script converts GFF or GTF formatted files to BED formatted
files.



Documentation

Users can select the field from the GTF file to be used in the name
field of the BED file using --set-name. Choices include “gene_id”,
“transcript_id”, “class”, “family”, “feature”, “source”, “repName”
and “gene_biotype”.
To specify the input is in GTF format use –is-gtf.

BED files can contain multiple tracks. If required, users can use the
“feature” or “source” fields in the input GFF file to specifiy
different tracks in the BED file (default none).



Usage

Example:

# View input GTF file
head tests/gff2bed.py/mm9_ens67_geneset_100.gtf

# Convert GTF to bed format using gene_id as name and group by GTF feature
cat tests/gff2bed.py/mm9_ens67_geneset_100.gtf | cgat gff2bed.py --is-gtf --set-name=gene_id --track=feature > mm9_ens67_geneset_100_feature.bed















	track name=CDS



	chr18

	3122494

	3123412

	ENSMUSG00000091539

	0

	
	






	chr18

	3327491

	3327535

	ENSMUSG00000063889

	0

	
	






	chr18

	3325358

	3325476

	ENSMUSG00000063889

	0

	
	











Command line options



usage: gff2bed [-h] [--is-gtf]
               [--set-name {gene_id,transcript_id,class,family,feature,source,repName,gene_biotype}]
               [--track {feature,source,None}] [--bed12-from-transcripts]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_gtf.py - compute overlap between multiple gtf files
    

    

    

    
 
  

    
      
          
            
  
diff_gtf.py - compute overlap between multiple gtf files


	Tags

	Genomics Intervals Genesets GTF Comparison






Purpose

This script compares multiple set of gtf files. It computes
the overlap between bases, exons and genes between each pair
of gtf files.

If results from a previous run are present, existing
pairs are not re-computed but simply echoed.

The output is a tab-separated table with counts for each pair
of files being compared. The fields are:







	Column

	Content



	set

	Name of the set



	ngenes_total

	number of genes in set



	ngenes_ovl

	number of genes overlapping



	ngenes_unique

	number of unique genes



	nexons_total

	number of exons in set



	nexons_ovl

	number of exons overlapping



	nexons_unique

	number of unique exons



	nbases_total

	number of bases in gene set



	nbases_ovl

	number of bases overlapping



	nbases_unique

	number of unique bases






Each of these fields will appear twice, once for each of the pair of files.
Hence ngenes_unique1 will be the number of genes in set1 that have no exons
that overlap with any exons in set2, and vice versa for ngenes_unique2. And
on for each field in the table above. This makes a total of 9*2=18 fields
containing counts, each starting with an n.

A further set of 18 fields each start with a p and are the corresponding
percentage values.



Options


	-s, --ignore-strand

	Ignore strand infomation so that bases overlap even if exons/genes are
on different strands



	-u, --update=FILENAME

	Read in previous results from FILENAME and only output comparisons that
are missing.



	-p, --pattern-identifier=PATTERN

	Provide a regular expression pattern for converting a filename into a
set name for the output. The regular expression should capture at least
one group. That group will be used to identify that file in the output
table (see examples)





Examples

For example if we have two gtf_files that look like:

first_set_of_genes.gtf:
1    protein_coding  exon    1       10      .       +       .       gene_id "1"; transcript_id "1"
1    protein_coding  exon    20      30      .       +       .       gene_id "1"; transcript_id "1"

second_set_of_genes.gtf:
1    protein_coding  exon    25      35      .       +       .       gene_id "1"; transcript_id "1"
2    protein_coding  exon    100     200     .       +       .       gene_id "2"; transcript_id "3"





Then the command:

python diff_gtf.py *.gtf --pattern-identifier='(.+)_of_genes.gtf' > out.tsv





would produce an output file that has a single row with set1 being “second_set”
and set2 being “first_set” (these are extracted using that –pattern-identifier
option). It will report that set1 contains 2 genes and set2 1 gene. That for
each set one of these genes overlaps with the other set. For set1 it will
report that 1 gene is unique and that no genes are unique for set2 and so on
for exons and bases.

If we want to add a third file to the comparison,
“third_set_of_genes.gtf”, we don’t need to redo the comparison between
first_set_of_genes.gtf and second_set_of_genes.gtf:

python diff_gtf.py --update=out.tsv *.gtf.gz > new.tsv





This will output a table with a row for third_set vs second_set and
third_set vs second_set, along with the comparison of first_set and
second_set that will simply be copied from the previous results. It is
important to include all files on the command line that are to be
output. Any comparisons in out.tsv that correspond to files that
are not given on the command line will not be output.



Usage


	::
	cgat diff_gtf.py GTF GTF [GTF [GTF […]]] [OPTIONS]
cgat diff_gtf GTF1 –update=OUTFILE [OPTIONS]





where GTF is a gtf or compressed gtf formated file and OUTFILE is the results
from a previous run.  At least two must be provided unless –update is present.

Type:

python diff_gtf.py --help





for command line help.



Command line options



usage: diff-gtf [-h] [--version] [-s] [-u FILENAME_UPDATE] [-p PATTERN_ID]
                [-g] [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
diff-gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2psl.py - convert from gff to psl
    

    

    

    
 
  

    
      
          
            
  
gff2psl.py - convert from gff to psl


	Tags

	Genomics Intervals GFF PSL Conversion






Purpose

This scripts converts from a gff formatted
file to a psl formatted file.
The output can be modified by the following command line options:


	--allow-duplicates

	keep duplicate entries from gff/gtf input file



	--genome-file

	restrict output to gff/gtf entries with contigs in fasta file



	--queries-tsv-file

	restrict output to queries in fasta file







Usage

Example:

python gff2psl.py < in.gff > out.psl





Type:

python gff2psl.py --help





for command line help.
genome-file



Command line options



usage: gff2psl [-h] [--is-gtf] [--no-header] [-g GENOME_FILE]
               [--queries-tsv-file INPUT_FILENAME_QUERIES]
               [--allow-duplicates] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2psl: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2coverage.py - compute genomic coverage of gff intervals
    

    

    

    
 
  

    
      
          
            
  
gff2coverage.py - compute genomic coverage of gff intervals


	Tags

	Genomics Intervals Summary GFF






Purpose

This script computes the genomic coverage of intervals in
a gff formatted file. The coverage is computed per feature.



Usage

You can use two methods to compute the coverage: genomic and histogram.

Let us explain their usage with this small.gtf file:

19 processed_transcript exon 16 16 . - . gene_id
19 processed_transcript exon 27 27 . - . gene_id
19 processed_transcript exon 8  8  . - . gene_id
19 processed_transcript exon 19 19 . - . gene_id
19 processed_transcript exon 5  5  . - . gene_id





and this toy example (small.fasta) of an indexed fasta file:

>chr19
GCCGGCCTCTACCTGCAGCAGATGCCCTAT





Both files (small.gtf and small.fasta) are included
in the GitHub [https://github.com/cgatOxford/cgat] repository.


genomic method

The genomic method computes the coverage of intervals
accross the genome file given as input. Let us see how to
apply the genomic method to the small examples above:

python gff2coverage.py --method=genomic --genome-file=small < small.gtf





The output (wrapped to fit here) will be:

contig  source  feature  intervals  bases  p_coverage  total_p_coverage
19      trans.  exon     5          5      16.666667   16.666667





As you can see the information displayed is the following: contig name,
source, feature name, number of intervals within the contig, number of
bases, percentage of coverage in the contig, and percentage of coverage
in the genome file.



histogram method

On the contrary, if you want to compute the coverage of intervals
within the gff file itself summarized as an histogram and
grouped by contig name, please use the histogram method.

To use the histogram method with the input files above, please type:

python gff2coverage.py --method=histogram --window=5 --features=exon --output-filename-pattern=%s.hist < small.gtf





In this case the output (written to file 19.hist) is:

abs_pos  rel_pos  abs_exon  rel_exon
0        0.0000   1         0.2000
5        0.1852   2         0.4000
10       0.3704   2         0.4000
15       0.5556   4         0.8000
20       0.7407   4         0.8000
25       0.9259   5         1.0000





The output is given as a pair of columns. The first pair of columns always
appears and lists the cumulative numbers of nucleotides in each window or
bin –absolute and relative values in the former and latter columns,
respectively. The subsequent pair of columns depends on the values given to
the --features option. In this example there is an extra column for the
exon feature but you could especify as many of them as you wanted among
those features listed in your gff file.

On the other hand, the --num-bins option can be used instead of
--window along with --genome-file to define the number of bins for the
resultant histogram. This parameter is used by default (with value: 1000)
when using the histogram method.

Please note the following:


	you need to specify the feature name explicitly (with the --feature option) to compute the genomic coverage of that feature. You can also usea comma-separated list of feature names.


	the output of the histogram method goes to a file (in the current workingdirectory) which is named as the contig name by default. To change thisbehaviour, please use the --output-filename-pattern option where %s will be substituted by the contig name.







Command line options



usage: gff2coverage [-h] [--version] [-g GENOME_FILE] [-f FEATURES]
                    [-w WINDOW_SIZE] [-b NUM_BINS] [-m {genomic,histogram}]
                    [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                    [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gff2coverage: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2fasta.py - output sequences from genomic features
    

    

    

    
 
  

    
      
          
            
  
gff2fasta.py - output sequences from genomic features


	Tags

	Genomics Intervals Sequences GFF Fasta Transformation






Purpose

This script outputs the genomic sequences for intervals within
a gff or :term: gtf formatted file.

The ouput can be optionally masked and filtered.



Usage

If you want to convert a features.gff file with intervals information
into a fasta file containing the sequence of each interval, use this
script as follows:

python gff2fasta.py --genome-file=hg19 < features.gff > features.fasta





The input can also be a gtf formatted file. In that case, use the
--is-gtf option:

python gff2fasta.py --genome-file=hg19 --is-gtf < features.gtf > features.fasta





If you want to add a polyA tail onto each transcript you can use the extend
options:


python gff2fasta.py –genome-file=hg19 –is-gtf
–extend-at=3 –extend-by=125 –extend-with=A
< features.gtf > features.fasta




If you want to merge the sequence of similar features together, please use
--merge-overlapping:

python gff2fasta.py --genome-file=hg19 --merge-overlapping < features.gff > features.fasta





It is possible to filter the output by selecting a minimum or maximum number
of nucleotides in the resultant fasta sequence with --max-length or
--min-interval-length respectively:

python gff2fasta.py --genome-file=hg19 --max-length=100 < features.gff > features.fasta





Or you can also filter the output by features name with the --feature
option:

python gff2fasta.py --genome-file=hg19 --feature=exon < features.gff > features.fasta





On the other hand, low-complexity regions can be masked with the --masker
option and a given gff formatted file:

python gff2fasta.py --genome-file=hg19 --masker=dust --maskregions-bed-file=intervals.gff < features.gff > features.fasta





where --masker can take the following values: dust, dustmasker,
and softmask.



Options


	--is-gtf
	Tells the script to expect a gtf format file



	--genome-file
	PATH to Fasta file of genome build to use



	--merge-overlapping
	Merge features in gtf/gff file that are adjacent and share
attributes



	--method=filter --filter-method
	Filter on a gff feature such as exon or CDS



	--maskregions-bed-file
	Mask sequences in intervals in gff file



	--remove-masked-regions
	Remove sequences in intervals in gff file rather than masking them



	--min-interval-length
	Minimum output sequence length



	--max-length
	Maximum output sequence length



	--extend-at
	Extend sequence at 3’, 5’ or both end.  Optionally ‘3only’ or ‘5only’ will
return only the 3’ or 5’ extended sequence



	--extend-by
	Used in conjunction with --extend-at, the number of nucleotides to extend
by



	--extend-with
	Optional. Used in conjunction with --extend-at and --extend-by.
Instead of extending by the genomic sequence, extend by this string repeated
n times, where n is –entend-by



	--masker
	Masker type to use: dust, dustmasker, soft or none



	--fold-at
	Fold the fasta sequence every n bases



	--naming-attribute
	Use this attribute to name the fasta entries







Command line options



usage: gff2fasta [-h] [--is-gtf] [-g GENOME_FILE] [-m] [-e FEATURE] [-f gff]
                 [--remove-masked-regions] [--min-interval-length MIN_LENGTH]
                 [--max-length MAX_LENGTH]
                 [--extend-at {none,3,5,both,3only,5only}]
                 [--header-attributes] [--extend-by EXTEND_BY]
                 [--extend-with EXTEND_WITH]
                 [--masker {dust,dustmasker,softmask,none}]
                 [--fold-at FOLD_AT] [--fasta-name-attribute NAMING_ATTRIBUTE]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
gff2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2gff.py - manipulate gff files
    

    

    

    
 
  

    
      
          
            
  
gff2gff.py - manipulate gff files


	Tags

	Genomics Intervals GFF Manipulation






Purpose

This scripts reads a gff formatted file, applies a
transformation and outputs the new intervals in gff format.
The type of transformation chosen is given through the –method`
option. Below is a list of available transformations:

complement-groups


output the complenent intervals for the features in the file, for
example to output introns from exons. The option --group-field
sets field/attribute to group by, e.g gene_id, transcript_id, feature,
source.




combine-groups


combine all features in a group into a single interval.  The
option --group-field sets field/attribute to group by, see
alse complement-groups.




to-forward-coordinates


translate all features forward coordinates.




to-forward-strand


convert to forward strand




add-upstream-flank/add-downstream-flank/add-flank


add an upstream/downstream flanking segment to first/last exon of a group.
The amount added is given through the options --extension-upstream and
--extension-downstream. If --flank-method is extend, the
first/last exon will be extended, otherwise a new feature will be added.




crop


crop features according to features in a separate gff file.
If a feature falls in the middle of another, two entries will be
output.””” )




crop-unique


remove non-unique features from gff file.




merge-features


merge consecutive features.




join-features


group consecutive features.





	filter-range
	extract features overlapping a chromosomal range. The range can be
set by the --filter-range option.



	sanitize
	reconcile chromosome names between ENSEMBL/UCSC or with an indexed
genomic fasta file (see index_fasta.py - Index fasta formatted files). Raises an exception if
an unknown contig is found (unless --skip-missing is set). The
method to sanitize is specified by --sanitize-method.The
method to sanitize is specified by --sanitize-method. Options for
`--sanitize-method` include “ucsc”, “ensembl”, “genome”.
A pattern of contigs to remove can be given in the option
--contig-pattern.
If --sanitize-method is set to ucsc or ensembl, the option
--assembly-report is required to allow for accurate mapping
between UCSC and Ensembl. If not found in the assembly report the
contig names are forced into the desired convention, either by removing
or prepending chr, this is useful for gff files with custom
contigs. The Assembly Report can be found on the NCBI assembly page
under the link “Download the full sequence report”.
If --sanitize-method is set to genome, the genome file has to be
provided via the option --genome-file or --contigs-tsv-file





skip-missing


skip entries on missing contigs. This prevents exception from being raised




filename-agp


agp file to map coordinates from contigs to scaffolds




rename-chr


Renames chromosome names. Source and target names are supplied as a file
with two columns. Examples are available at:
https://github.com/dpryan79/ChromosomeMappings
Note that unmapped chromosomes are dropped from the output file.






Usage

For many downstream applications it is helpful to make sure
that a gff formatted file contains only features on
placed chromosomes.

As an example, to sanitise hg38 chromosome names and remove
chromosome matching the regular expression patterns
“ChrUn”, “_alt” or “_random”, use the following:


cat in.gff
| gff2gff.py –method=sanitize –sanitize-method=ucsc


–assembly-report=/path/to/file –skip-missing





gff2gff.py –remove-contigs=”chrUn,_random,_alt” > gff.out






The “–skip-missing” option prevents an exception being
raised if entries are found on missing chromosomes

Another example, to rename UCSC chromosomes to ENSEMBL.


cat ucsc.gff
| gff2gff.py –method=rename-chr


–rename-chr-file=ucsc2ensembl.txt > ensembl.gff







Type:

cgat gff2gff --help





for command line help.



Command line options



usage: gff2gff [-h] [--version]
               [-m {add-flank,add-upstream-flank,add-downstream-flank,crop,crop-unique,complement-groups,combine-groups,filter-range,join-features,merge-features,sanitize,to-forward-coordinates,to-forward-strand,rename-chr}]
               [--ignore-strand] [--is-gtf] [-c INPUT_FILENAME_CONTIGS]
               [--agp-file INPUT_FILENAME_AGP] [-g GENOME_FILE]
               [--crop-gff-file FILENAME_CROP_GFF] [--group-field GROUP_FIELD]
               [--filter-range FILTER_RANGE]
               [--sanitize-method {ucsc,ensembl,genome}]
               [--flank-method {add,extend}] [--skip-missing]
               [--contig-pattern CONTIG_PATTERN]
               [--assembly-report ASSEMBLY_REPORT]
               [--assembly-report-hasids ASSEMBLY_REPORT_HASIDS]
               [--assembly-report-ucsccol ASSEMBLY_REPORT_UCSCCOL]
               [--assembly-report-ensemblcol ASSEMBLY_REPORT_ENSEMBLCOL]
               [--assembly-extras ASSEMBLY_EXTRAS]
               [--extension-upstream EXTENSION_UPSTREAM]
               [--extension-downstream EXTENSION_DOWNSTREAM]
               [--min-distance MIN_DISTANCE] [--max-distance MAX_DISTANCE]
               [--min-features MIN_FEATURES] [--max-features MAX_FEATURES]
               [--rename-chr-file RENAME_CHR_FILE] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gff2gff: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2histogram.py - compute histograms from intervals in gff or bed format
    

    

    

    
 
  

    
      
          
            
  
gff2histogram.py - compute histograms from intervals in gff or bed format


	Tags

	Genomics Intervals GFF Summary






Purpose

This script computes distributions of interval sizes, intersegmental
distances and interval overlap from a list of intervals in gff
or bed format.

The output will be written into separate files. Filenames are given by
--ouput-filename-pattern.

Available methods are:


	hist
	Output a histogram of interval sizes and distances between intervals
in nucleotides.



	stats
	Output summary statistics of interval sizes and distances between
intervals



	values
	Output distances, sizes, and overlap values to separate files.



	all
	all of the above.







Usage

For example, a small gff file such as this (note that intervals need
to be sorted by position):

chr19   processed_transcript    exon    60105   60162   .       -       .
chr19   processed_transcript    exon    60521   60747   .       -       .
chr19   processed_transcript    exon    65822   66133   .       -       .
chr19   processed_transcript    exon    66346   66416   .       -       .
chr19   processed_transcript    exon    66346   66509   .       -       .





will give when called as:

cgat gff2histogram < in.gff





the following output files:


	hist
	Histogram of feature sizes and distances between adjacent features








	residues

	size

	distance



	58.0

	1

	na



	71.0

	1

	na



	164.0

	1

	na



	212.0

	na

	1



	227.0

	1

	na



	312.0

	1

	na



	358.0

	na

	1



	5074.0

	na

	1










stats


Summary statistics of the distribution of feature size and distance between
adjacent features.















	data

	nval

	min

	max

	mean

	median

	stddev

	sum

	q1

	q3



	size

	5

	58.0000

	312.0000

	166.4000

	164.0000

	95.6339

	832.0000

	71.0000

	227.0000



	distance

	3

	212.0000

	5074.0000

	1881.3333

	358.0000

	2258.3430

	5644.0000

	212.0000

	5074.0000









overlaps


A file with features that overlap other features, here:

chr19   processed_transcript    exon    66346   66416   .       -       .       chr19   processed_transcript    exon    66346   66509   .       -       .








Type:

python gff2histogram.py --help





for command line help.



Command line options



usage: gff2histogram [-h] [--version] [-b BIN_SIZE] [--min-value MIN_VALUE]
                     [--max-value MAX_VALUE] [--no-empty-bins]
                     [--with-empty-bins] [--ignore-out-of-range]
                     [--missing-value MISSING_VALUE] [--use-dynamic-bins]
                     [--format {gff,gtf,bed}]
                     [--method {all,hist,stats,overlaps,values}]
                     [--output-section {all,size,distance}]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
gff2histogram: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2stats.py - count features, etc. in gff file
    

    

    

    
 
  

    
      
          
            
  
gff2stats.py - count features, etc. in gff file


	Tags

	Genomics Intervals GFF GTF Summary






Purpose

This script generates summary statistics over features,
source, gene_id and transcript_id in one or more gff
or gtf formatted files.



Usage

Input is either a gff or gtf file; gtf input must be specified
with the –is-gtf option.

Example:

python gff2stats.py --is-gtf example.gtf > example_sum.tsv

cat example.gtf

19  processed_transcript  exon  6634666509  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6052160747  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6010560162  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000592209" ...
19  processed_transcript  exon  6634666416  .  -  .  gene_id "ENSG00000225373"; transcript_id "ENST00000589741" ...

cat example_sum.tsv

track  contigs  strands  features  sources  genes  transcripts ...
stdin  1        2        4         23       2924   12752       ...





The counter used is dependent on the file type.  For a gff file, the implemented counters are:


	number of intervals per contig, strand, feature and source




For a gtf file, the additional implemented counters are:


	number of genes, transcripts, single exon transcripts


	summary statistics for exon numbers, exon sizes, intron sizes and
transcript sizes




The output is a tab-separated table.



Options

The default action of gff2stats is to count over contigs, strand,
feature and source.  This assumes the input file is a gff file

There is a single option for this script:

``--is-gtf``






The input file is gtf format.  The output will therefore
contain summaries over exon numbers, exon sizes, intron sizes and
transcript sizes in addition to the the number of genes,
transcripts and single exon transcripts.




Type:

python gff2stats.py --help





for command line help.



Command line options



usage: gff2stats [-h] [--version] [--is-gtf] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gff2stats: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtf2gff.py - convert a transcript set to genomic features
    

    

    

    
 
  

    
      
          
            
  
gtf2gff.py - convert a transcript set to genomic features


	Tags

	Genomics Genesets Intervals Transformation GTF GFF






Purpose

This scripts converts a transcript set in a gtf formatted file
into a set of features in a gff formatted file.

In other words, a gene set (gtf), which constitutes a hierarchical set
of annotations, will be converted into a non-hierarchical list of
genomic segments.

Various methods can be used to do the conversion (see command line
argument --method):


	exons
	annotate exons. Exonic segments are classified according to the
transcript structure.



	genome/full
	annotate genome with gene set. Genomic segments are labeled
intronic, intergenic, etc. This annotation aggregates the
information of multiple genes such that each annotation is either
valid or ambiguous.



	genes
	annotate genome using the information on a gene-by-gene basis.
Multiple overlapping annotations will be created for each transcript.
Redundant annotations will be merged.



	great-domains
	regulatory domains using the basal+extended model according to GREAT.



	promotors
	declare promoter regions. These segments might be overlapping. A promotor
is the region x kb upstream of a transcription start site. The option
--promotor-size sets the region width.



	regulons
	declare regulatory regions. Regulatory regions contain the region x
kb of upstream and downstream of a transciption start site. The
options --upstream-extension and -downstream set the region width.



	tts-regulons
	declare tts regulatory regions. tts-regulatory regions contain the
region x kb of upstream and downstream of a transciption
termination site. The options --upstream-extension and -downstream
set the region width.



	territories
	build gene territories around full length genes.



	tss-territories
	build gene territories around transcription start sites.





In a simple setting, assume we have the two genes below, the first
with a single transcript on the positive strand, the second on the
negative strand:

       Gene A                    Gene B
        |---|                 |---|  |---|
     >>>>   >>>>           <<<<   <<<<   <<<<

Genome (simplified result without UTRs and flanks)

       exon   exon         exon   exon   exon
..---><--><-><--><---------<--><-><--><-><--><-----...
intergenic intron  intergenic  intron intron intergenic

Territories

     Gene A                    Gene B
<---------------------><------------------------------>

TSS-Territories

     Gene A                    Gene B
<-------->            <----------->

Promotors

<---->              <---->






Genome

If --method=genome, the gene set is used to annotate the complete genome.


Note

The gtf file has to be sorted first by contig and then by position.



A segment in the genome will either be covered by:


	cds
	a coding exon (also: CDS, start_codon).



	utr
	a UTR (also: stop_codon)



	5flank, 3flank, flank
	an upstream/downstream segment of defined size. If the intergenic
region is too small to accomodate a flank, the regions is just
‘flank’.



	intergenic
	intergenic region.



	5telomeric, 3telomeric
	telomeric region (before/after first/last gene).



	intronic
	intronic region. An intron has a minimum size of 30 bases.



	frameshift
	frameshift. Introns of less than 4 residues length



	ambiguous
	in case of overlapping genes, regions are designated ambiguous



	unknown
	unknown are intronic regions that are less than the
minimum size of an intron (default: 30) and larger than the size of
frameshift (default:4).  These could be either genuine small
introns or they could be artefactual arising from collapsing the
exons within a gene model.





All segments are annotated by their closest gene. Intergenic regions are
annotated with their two neighbouring genes. The upstream gene is listed
in the attribute gene_id, the downstream one is listed in the attribute
downstream_gene_id.



Genes

If --method=genes, the gene set is used to annotate the complete genome.


Note

The gtf file has to be sorted by gene.



A segment in the genome will be annotated as:


	cds
	a coding exon



	utr5, utr3
	a 5’ or 3’ utr



	exon
	an exon. Exons are further classified into first, middle and last exons.



	intronic
	an intronic region. Intronic regions are further divided into
first, middle, last.



	upstream, downstream
	upstream/downstream regions in 5 intervals of a total of 1kb (see
option –flank-size to increase the total size).







Territories

If --method=territories, the gene set is used to define gene
territories.  Territories are segments around genes and are
non-overlapping. Exons in a gene are merged and the resulting the
region is enlarged by –radius. Overlapping territories are divided at
the midpoint between the two genes. The maximum extent of a territory
is limited by the option --territory-extension


Note

The gtf file has to be sorted first by contig and then by position.




Note

Genes should already have been merged (gtf2gtf –merge-transcripts)





TSSTerritories

If --method=tss-territories, the gene set is used to define gene
territories.  Instead of the full gene length as in
Territories, only the tss is used to define a
territory. Territories are segments around genes and are
non-overlapping.  Overlapping territories are divided at the midpoint
between the two genes. The maximum extent of a territory is limited by
the option --territory-extension.


Note

The gtf file has to be sorted first by contig and then by position.




Note

Genes should already have been merged (gtf2gtf –merge-transcripts)



The domain definitions corresponds to the nearest gene rule in GREAT.



GREAT-Domains

Define GREAT regulatory domains. Each TSS in a gene is associated with
a basal region. The basal region is then extended upstream to the
basal region of the closest gene, but at most to –radius. In the case
of overlapping genes, the extension is towards the next
non-overlapping gene.

This is the “basal plus extension” rule in GREAT. Commonly used are
5+1 with 1 Mb extension.  To achieve this, use for example:

cgat gtf2gff    --genome-file=hg19    --method=great-domains    --upstream-extension=5000    --downstream-extension=1000    --territory-extension=1000000    < in.gtf > out.gff





If there are a multiple TSS in a transcript, the basal region extends from the
first to the last TSS plus the upstream/downstream flank.



Exons

If --method=exons, exons are annotated by their dispensibility.


Note

The gtf file should be sorted by genes



For each exon, the following additional fields are added to the gtf file:


	ntranscripts
	number of transcripts



	nused
	number of transcripts using this exon



	positions
	positions of exon within transcripts. This is a , separated
list of tuples pos:total. For example, 1:10,5:8 indicates
an exon that appears in first position in a ten exon transcript and
fifth position in an eight exon transcript. The position is
according to the direction of transcription.






Note

overlapping but non-identical exons, for example due to internal
splice sites, are listed as separate exons. Thus the output is not
fully flat as some segments could be overlapping (see output
variable noverlapping in the log file).



The following example uses an ENSEMBL gene set:: (needs genome-file to
run)


gunzip < Mus_musculus.NCBIM37.55.gtf.gz | awk ‘$3 == “CDS”’ | python gtf2gff.py –method=exons –restrict-source=protein_coding






Promoters

If --method=promotors, putative promotor regions are output. A
promoter is a pre-defined segment upstream of the transcription start
site. As the actual start site is usually not known, the start of the
first exon within a transcript is used as a proxy. A gene can have
several promotors associated with it, but overlapping promotor regions
of the same gene will be merged. A promoter can extend into an
adjacent upstream gene.

The --restrict-source option determines which GTF entries are
output. The default is to output all entries but the user can choose
from protein_coding, pseudogene or lncRNA.

The size of the promotor region can be specified by the command line
argument --promotor-size.



Regulons

If --method=regulons, putative regulon regions are output. This is similar
to a promotor, but the region extends both upstream and downstream from
the transcription start site.

The --restrict-source option determines which GTF entries are
output. The default is to output all entries but the user can choose
from protein_coding, pseudogene or lncRNA.

The size of the promotor region can be specified by the command line
argument --upstream-extension and --downstream-extension

If --method=tts-regulons, regulons will be defined around the
transcription termination site.




Usage

Type:

cgat gtf2gff --method=genome --genome-file=hg19 < geneset.gtf > annotations.gff





For command line help:

cgat gtf2gff --help







Command line options



usage: gtf2gff [-h] [--version] [-g GENOME_FILE] [-i]
               [-s {protein_coding,pseudogene,lncRNA}]
               [-m {full,genome,exons,promotors,tts,regulons,tts-regulons,genes,territories,tss-territories,great-domains}]
               [-r RADIUS] [-f FLANK] [--flank-increment-size INCREMENT]
               [-p PROMOTOR] [-u UPSTREAM] [-d DOWNSTREAM]
               [--gene-detail {introns+exons,exons,introns}]
               [--merge-overlapping-promotors]
               [--min-intron-length MIN_INTRON_LENGTH] [--is-unsorted]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2gff: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtf2gtf.py - manipulate transcript models
    

    

    

    
 
  

    
      
          
            
  
gtf2gtf.py - manipulate transcript models


	Tags

	Genomics Genesets GTF Manipulation






Purpose

This script reads a gene set in gtf format from stdin, applies some
transformation, and outputs a new gene set in gtf format to stdout.
The transformation is chosen by the --method command line option.

Transformations available for use in this script can broadly be
classified into four categories:


	sorting gene sets


	manipulating gene models


	filtering gene sets


	setting/resetting fields within a gtf file




Further options for working with gtf files are available in gff2gff.py,
which can be run with the specification –is-gtf


Sorting gene sets

sort


Sorts entries in gtf file by one or more fields







	
option





gene





	
order in which fields are sorted





gene_id, contig, start









	gene+transcript

	gene_id, transcript_id, contig, start



	contig+gene

	contig, gene_id, transcript_id, start



	transcript

	transcript_id, contig, start



	position

	contig, start



	position+gene

	contig( gene_id, start )



	gene+position

	gene_id, contig, start



	gene+exon

	gene_id, exon_id






N.B. position+gene sorts by gene_id, start, then subsequently sorts
flattened gene lists by contig, start






Manipulating gene-models

Options that can be used to alter the features represented in a gtf
file. Only one method can be specified at once.

Input gtfs need to be sorted so that features for a gene or transcript
appear consecutively within the file. This can be achevied using
--method=sort.


	genes-to-unique-chunks`
	Divide the complete length of a gene up into chunks that represent
ranges of bases that are all present in the same set of transcripts.
E.g. for two overlapping exons an entry will be output representing
the overlap and a seperate entry each for the sequences only present
in one. Ranges which are between the first TSS and last TTS but not
present in any transcript (i.e. merged introns) are also output.
Useful for DEXSeq like splicing analysis



	find-retained-introns
	Finds intervals within a transcript that represent retained-introns,
here a retained intron is considered to be an intron in one transcript
that is entirely contianed within the exon of another. The retained
intron will be assigned to the transcript with the containing exon. Where
multiple, overlapping introns are contained within a single exon of a
transcript, the union of the introns will be output. Thus when considering
an indevidual transcript, outputs will be non-overlapping. However,
overlapping, or even identical feature can be output if they belong to
different transcripts.



	merge-exons
	Merges overlapping exons for all transcripts of a gene, outputting
the merged exons. Can be used in conjunction with
merge-exons-distance to set the minimum distance that may
appear between two exons before they are merged.If
--mark-utr is set, the UTR regions will be output separately.



	merge-transcripts
	Merges all transcripts of a gene. Outputs contains a single interval that
spans the original gene (both introns and exons). If --with-utr is
set, the output interval will also contain UTR.





merge-genes


Merges genes that have overlapping exons, outputting a single
gene_id and transcript_id for all exons of overlapping genes. The
input needs te sorted by transcript ” (Does not merge intervals on
different strands).





	join-exons
	Joins together all exons of a transcript, outputting a single
interval that spans the original transcript (both introns and
exons). Input needs to be sorted by transcript.



	intersect-transcripts
	Finds regions representing the intersection of all transcripts of a gene.
Output will contain intervals spanning only those bases covered by all
transcripts. If --with-utr is set, the UTR will also be included in the
intersect. This method only uses exon or CDS features.



	merge-introns
	Outputs a single interval that spans the region between the start
of the first intron and the end of last intron. Single exons genes
will not be output. The input needs to be sorted by gene



	exons2introns
	Merges overlapping introns for all transcripts of a gene,
outputting the merged introns. Use --intron-min-length to
ignore merged introns below a specified length. Use
--intron-border to specify a number of residues to remove at
either end of output introns (residues are removed prior to
filtering on size when used in conjunction with
--intron-min-length).



	transcripts2genes
	Cluster transcripts into genes by exon overlap ignoring any
gene_ids in the gtf file. May be used in conjunction with
reset-strand





The option permit-duplicates may be specified in order to
allow gene-ids to be duplicated within the input gtf file
(i.e. for the same gene-id to appear non-consecutively within the
input file). However, this option currently only works for
merge-exons, merge-transcripts, merge-introns, and
intersect-transcripts. It DOES NOT work for merge-genes,
join-exons, or exons-file2introns.



Filtering gene sets

Options that can be used to filter gtf files. For further
detail see command line options.

Input gtfs need to be sorted so that features for a gene or transcript
appear consecutively within the file. This can be achevied using
--method=sort --sort-order.


	filter
	When filtering on the basis of ‘gene-id’ or ‘transcript-id’ a
filename containing ids to be removed may provided using
--map-tsv-file. Alternatively, a random subsample of
genes/transcripts may be retained using
--sam-fileple-size. Use --min-exons-length in conjunction
with --sam-fileple-size to specify a minimum length for
genes/transcripts to be retained. Use --ignore-strand to set
strand to ‘.’ in output.

Other filter options include longest-gene, longest-transcript,
or representative-transcript.

When filtering on the basis of gene-id, transcript-id or longest-gene,
--invert-filter may be used to invert the selection.



	remove-overlapping
	Given a second gff formatted file (--file-gff) removes
any features overlapping. Any transcripts that intersect intervals
in the supplied file are removed.  (Does not account for strand.)



	remove-duplicates
	Remove duplicate features from gtf file. The type of
feature to be removed is set by the option -duplicate-feature.
Setting --duplicate-feature to ‘gene’, ‘transcript’, or
‘coordinates’ will remove any interval for which non-consecutive
occurrances of specified term appear in input gtf file.
Setting to ‘ucsc’, will remove any interval for which
transcript-id contains ‘_dup’.







Setting fields

Options for altering fields within gtf.


	rename-genes
	With a mapping file is provided using --map-tsv-file, renames
the gene_id to the one supplied. Outputs a gtf file with
field renamed. Any entry in input gtf not appearing in
mapping file is discarded.



	rename-transcripts
	as rename-genes, but renames the transcript_id.



	add-protein-id
	Takes a map of transcript_id to protein_id from the a tsv file
(see option --map-tsv-file) and appends the protein_id
provided to the attributes field.  Any entry with a transcript_id
not appearing in the tsv file is discarded.



	renumber-genes
	Renumber genes from 1 using the pattern provided in
--pattern-identifier.



	renumber-transcripts
	Renumber transcripts from 1 using the pattern provided in
--pattern-identifier.



	unset-genes
	Renumber genes from 1 using the pattern provided in
--pattern-identifier. Transcripts with the same gene-id in the
input gtf file will have different gene-ids in the output
gtf file.



	set-transcript-to-gene
	Will set the transcript-id to the gene-id for each feature.



	set-gene-to-transcript
	Will set the gene-id to the transcript-id for each each feature.



	set-protein-to-transcript
	Will append transcript_id to attributes field as ‘protein_id’



	set-score-to-distance
	Will reset the score field (field 6) of each feature in input
gtf to be the distance from transcription start site to
the start of the feature.  (Assumes input file is sorted by
transcript-id)



	set-gene_biotype-to-source
	Sets the gene_biotype attribute from the source column. Will only set
if biotype attribute is not present in the current record.



	rename-duplicates
	Rename duplicate gene_ids and transcript_ids by addition of
numerical suffix



	set-source-to-transcript_biotype
	Sets the source attribute to the transcript_biotype
attribute. Will only set if transcript_biotype attribute is
present in the current record.








Usage

The following example sorts the input gene set by gene
(method=sort) so that it can be used as input for
method=intersect-transcripts that outputs genomic the genomic
regions within a gene that is covered by all transcripts in a gene.
Finally, the resultant transcripts are renamed with the pattern
“MERGED_%i”:

cgat gtf2gtf
        --method=sort
        --sort-order=gene     | cgat gtf2gtf
           --method=intersect-transcripts
           --with-utr
| cgat gtf2gtf
           --method=renumber-transcripts
           --pattern-identifier=MERGED_%i





Type:

cgat gtf2gtf --help





for command line options.



Command line Options



usage: gtf2gtf [-h] [--version] [--merge-exons-distance MERGE_EXONS_DISTANCE]
               [--pattern-identifier PATTERN]
               [--sort-order {gene,gene+transcript,transcript,position,contig+gene,position+gene,gene+position,gene+exon}]
               [--mark-utr] [--without-utr]
               [--filter-method {gene,transcript,longest-gene,longest-transcript,representative-transcript,proteincoding,lincrna}]
               [-a tsv] [--gff-file GFF] [--invert-filter]
               [--sample-size SAMPLE_SIZE]
               [--intron-min-length INTRON_MIN_LENGTH]
               [--min-exons-length MIN_EXONS_LENGTH]
               [--intron-border INTRON_BORDER] [--ignore-strand]
               [--permit-duplicates]
               [--duplicate-feature {gene,transcript,both,ucsc,coordinates}]
               [--use-gene-id]
               [-m {add-protein-id,exons2introns,filter,find-retained-introns,genes-to-unique-chunks,intersect-transcripts,join-exons,merge-exons,merge-transcripts,merge-genes,merge-introns,remove-overlapping,remove-duplicates,rename-genes,rename-transcripts,rename-duplicates,renumber-genes,renumber-transcripts,set-transcript-to-gene,set-gene-to-transcript,set-protein-to-transcript,set-score-to-distance,set-gene_biotype-to-source,set-source-to-transcript_biotype,sort,transcript2genes,unset-genes}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtf2fasta.py - annotate genomic bases from a gene set
    

    

    

    
 
  

    
      
          
            
  
gtf2fasta.py - annotate genomic bases from a gene set


	Tags

	Genomics Genesets Sequences GTF FASTA Transformation






Purpose

This script can be used for a quick-and-dirty annotation of variants
in a genome. It is most appropriately used in exploratory analyses
of the effect of variants/alleles.

For a better prediction of variant effects in coding sequences,
see <no title> and <no title>.

If you wish to convert gtf intervals into fasta sequences, use gff2fasta.py.

This script takes a gtf formatted file from ENSEMBL and
annotates each base in the genome according to its function. The
script multiplexes both strands with lower- case characters referring
to the forward strand and upper-case characters referring to the
reverse strand.

The codes and their meaning are:







	code

	description



	a

	first codon position within a complete codon



	b

	second codon position within a complete codon



	c

	third codon position within a complete codon



	d

	coding base, but in multiple frames or strands



	e

	non-coding base in exon



	f

	frame-shifted base



	g

	intergenic base



	i

	intronic base



	l

	base in other RNA



	m

	base in miRNA



	n

	base in snRNA



	o

	base in snoRNA



	r

	base in rRNA (both genomic and mitochondrial)



	p

	base in pseudogene (including transcribed, unprocessed and processed)



	q

	base in retrotransposon



	s

	base within a splice signal (GT/AG)



	t

	base in tRNA (both genomic and mitochondrial)



	u

	base in 5’ UTR



	v

	base in 3’ UTR



	x

	ambiguous base with multiple functions.



	y

	unknown base







Output files

The annotated genome is output on stdout.

The script creates the following additional output files:


	counts
	Counts for each annotations



	junctions
	Splice junctions. This is a tab separated table linking residues that are
joined via features. The coordinates are forward/reverse coordinates.

The columns are:


	contig
	the contig



	strand
	direction of linkage



	end
	last base of exon in direction of strand



	start
	first base of exon in direction of strand



	frame
	frame base at second coordinate (for coding sequences)












Known problems

The stop-codon is part of the UTR. This has the following effects:



	On the mitochondrial chromosome, the stop-codon might be used for
ncRNA transcripts and thus the base is recorded as ambiguous.


	On the mitochondrial chromosome, alternative transcripts might
read through a stop-codon (RNA editing). The codon itself will be
recorded as ambiguous.









Usage

For example:

zcat hg19.gtf.gz | python gtf2fasta.py --genome-file=hg19 > hg19.annotated





Type:

python gtf2fasta.py --help





for command line help.



Command line options


	--genome-file
	required option. filename for genome fasta file



	--ignore-missing
	transcripts on contigs not in the genome file will be ignored



	--min-intron-length
	intronic bases in introns less than specified length
will be marked “unknown”







usage: gtf2fasta [-h] [--version] [-g GENOME_FILE] [-i]
                 [--min-intron-length MIN_INTRON_LENGTH] [-m {full}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gtf2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2wiggle.py - convert bam to wig/bigwig file
    

    

    

    
 
  

    
      
          
            
  
bam2wiggle.py - convert bam to wig/bigwig file


	Tags

	Genomics NGS Intervals Conversion BAM WIGGLE BIGWIG BEDGRAPH






Purpose

convert a bam file to a bigwig or bedgraph file.

Depending on options chosen, this script either computes the densities
itself or makes use of faster solutions if possible. The script
requires the executables wigToBigWig and bedToBigBed
to be in the user’s PATH.

If no –shift-size or –extend option are given, the coverage is computed
directly on reads.  Counting can be performed at a certain resolution.

The counting currently is not aware of spliced reads, i.e., an
inserted intron will be included in the coverage.

If –shift-size or –extend are given, the coverage is computed by shifting
read alignment positions upstream for positive strand reads or
downstream for negative strand reads and extend them by a fixed
amount.

For RNASEQ data it might be best to run genomeCoverageBed directly on
the bam file.



Usage

Type:

cgat bam2wiggle           --output-format=bigwig           --output-filename-pattern=out.bigwig in.bam





to convert the bam file file:in.bam to bigwig format
and save the result in out.bigwig.



Command line options



usage: bam2wiggle [-h] [--version] [-o {bedgraph,wiggle,bigbed,bigwig,bed}]
                  [-s SHIFT] [-e EXTEND] [-p SPAN] [-m]
                  [--scale-base SCALE_BASE] [--scale-method {none,reads}]
                  [--max-insert-size MAX_INSERT_SIZE]
                  [--min-insert-size MIN_INSERT_SIZE] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                  [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2wiggle: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2annotator.py - convert bed to annotator format
    

    

    

    
 
  

    
      
          
            
  
bed2annotator.py - convert bed to annotator format


	Tags

	Python






Purpose

This script converts a bed file into annotator compatible regions. Depending on the option –section
this script will create:



	segments
	a segments file



	annotations
	a file with annotations. Each bed track is a separate annotation.



	workspace
	a file with a workspace










Usage

Example:

python bed2annotator2tsv.py --help





Type:

python bed2annotator2tsv.py --help





for command line help.



Command line options



usage: bed2annotator [-h] [-g GENOME_FILE] [-f FEATURES] [-i FILES]
                     [-a ANNOTATIONS] [--map-tsv-file INPUT_FILENAME_MAP]
                     [-l MAX_LENGTH] [-m]
                     [-s {segments,annotations,workspace}] [--subset SUBSETS]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
bed2annotator: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2graph.py - compute the overlap graph between two bed files
    

    

    

    
 
  

    
      
          
            
  
bed2graph.py - compute the overlap graph between two bed files


	Tags

	Python






Purpose

This script ouputs a list of the names of all overlapping intervals
between two bed files.



Usage

Type:

python bed2graph.py A.bed.gz B.bed.gz > graph.out





for command line help.



Command line options



usage: bed2graph [-h] [--version] [-o {full,name}] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2graph: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    chain2psl.py - convert a chain file to a psl file
    

    

    

    
 
  

    
      
          
            
  
chain2psl.py - convert a chain file to a psl file


	Tags

	Genomics Intervals GenomeAlignment PSL CHAIN Conversion






Purpose

convert a UCSC chain [http://www.breyer.com/ucsc/htdocs/goldenPath/help/chain.html]
formatted file to a UCSC psl [http://genome.ucsc.edu/FAQ/FAQformat.html#format2] formatted file.

This tool is equivalent to the UCSC tool chainToPsl except that it
will not compute the number of matching, mismatching, etc. bases and
thus does not require the sequences.

The nomenclature the UCSC uses for its chain files is
targetToQuery.chain for mapping query to target
(reference). According to the UCSC documentation, target is the
first entry in chain files.

We have been using the nomenclature QueryToTarget.psl. In following
this convention, the correct way to converting a psl file is:

python chain2psl.py < targetToQuery.chain > QueryToTarget.psl





If you would like to keep the TargetToQuery convention, you will need
to add a pslSwap:

python chain2psl.py < targetToQuery.chain | pslSwap stdin stdout > targetToQuery.psl







Usage

For example:

cgat chain2psl.py < in.chain > out.psl





Type:

cgat chain2psl.py --help





for command line help.



Command line options



usage: chain2psl [-h] [--version] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
chain2psl: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_bed.py - count differences between several bed files
    

    

    

    
 
  

    
      
          
            
  
diff_bed.py - count differences between several bed files


	Tags

	Genomics Intervals BED Comparison






Purpose

Compute overlap statistics between multiple bed files. For each pairwise
comparison, this script outputs the number of intervals (exons) and
bases overlapping.

Using the --update option, a table can be incrementally updated with
additional comparisons.

The strand of intervals is ignored in comparisons.







	Column

	Content



	set

	Name of the set



	nexons_total

	number of intervals in set



	nexons_ovl

	number of intervals overlapping



	nexons_unique

	number of unique intervals



	nbases_total

	number of bases in gene set



	nbases_ovl

	number of bases overlapping



	nbases_unique

	number of unique bases








Usage

For example:

python diff_bed.py *.bed.gz > out.tsv





To update results from a previous run, type:

python diff_bed.py --update=out.tsv *.bed.gz > new.tsv





Type:

python diff_bed.py --help





for command line help.



Command line options



usage: diff-bed [-h] [--version] [-u FILENAME_UPDATE] [-p PATTERN_ID] [-t]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
diff-bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2bed.py - segment sequences
    

    

    

    
 
  

    
      
          
            
  
fasta2bed.py - segment sequences


	Tags

	Genomics Sequences Intervals FASTA BED Conversion






Purpose

This script takes a genomic sequence in fasta format
and applies various segmentation algorithms.

The methods implemented (--methods) are:


	cpg
	output all locations of cpg in the genome



	fixed-width-windows-gc
	output fixed width windows of a certain size adding their
G+C content as score



	gaps
	ouput all locations of assembly gaps (blocks of N)
in the genomic sequences



	ungapped
	output ungapped locations in the genomic sequences







Usage

Type:

python fasta2bed.py --method=gap < in.fasta > out.bed





Type:

python fasta2bed.py --help





for command line help.



Command line options



usage: fasta2bed [-h] [--version]
                 [-m {fixed-width-windows-gc,cpg,windows-cpg,gaps,ungapped,windows}]
                 [-w WINDOW_SIZE] [-s WINDOW_SHIFT] [--min-cpg MIN_CPG]
                 [--min-interval-length MIN_LENGTH] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
fasta2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff2table.py - compute features for intersection of two gff files
    

    

    

    
 
  

    
      
          
            
  
gff2table.py - compute features for intersection of two gff files


	Tags

	Genomics Intervals Annotation Comparison GFF






Purpose

collect intervals from two gff files and compute features based on
their intersection. The script is intended to compute properties for a
set of non-overlapping windows.


	Transforms:
	
	none:        no transform


	overlap:     overlap between set1 and set2


	complement:  part of set1 that is not covered by set2


	
	third_codon: only takes every third position. Needs frame information
	in the gff file.











	Decorators:
	
	GC:            G+C content of intervals


	count:         number of windows


	mean-length:   mean length of intervals overlapping with window










Usage

Example:

python gff2table.py --help





Type:

python gff2table.py --help





for command line help.



Command line options



usage: gff2table [-h] [--version] [-g GENOME_FILE] [-w FILENAME_WINDOWS]
                 [-d FILENAME_DATA] [--is-gtf] [-f {GC}]
                 [-c {counts,gc,gc3,mean-length,median-length,percent-coverage,median-score,mean-score,stddev-score,min-score,max-score}]
                 [-e] [-t {none,overlap,complement,third_codon}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
gff2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    index_fasta.py - Index fasta formatted files
    

    

    

    
 
  

    
      
          
            
  
index_fasta.py - Index fasta formatted files


	Tags

	Genomics Sequences FASTA Manipulation






Purpose

This script indexes one or more fasta formatted files into a
database that can be used by other scripts in the cgat code collection
and IndexedFasta for quick access to a particular part of a sequence.
This is very useful for large genomic sequences.

By default, the database is itself a fasta formatted file in
which all line breaks and other white space characters have been
removed.  Compression methods are available to conserve disk space,
though they do come at a performance penalty.

The script implements several indexing and compression methods.  The
default method uses no compression and builds a simple random access
index based on a table of absolute file positions.  The sequence is
stored in a plain fasta file with one line per sequence allowing to
extract a sequence segment by direct file positioning.

Alternatively, the sequence can be block-compressed using different
compression methods (gzip, lzo, bzip). These are mostly for research
purposes.

See also http://pypi.python.org/pypi/pyfasta for another
implementation.  Samtools provides similar functionality with the
samtools faidx command and block compression has been implemented
in the `bgzip http://samtools.sourceforge.net/tabix.shtml>`_ tool.

The script permits supplying synonyms to the database index. For
example, setting --synonyms=chrM=chrMT will ensure that the
mitochondrial genome sequence is returned both for the keys chrM
and chrMT.

Examples

Index a collection of fasta files in a compressed archive:

python index_fasta.py oa_ornAna1_softmasked ornAna1.fa.gz > oa_ornAna1_softmasked.log





To retrieve a segment:

python index_fasta.py --extract=chr5:1000:2000 oa_ornAna1_softmasked





Indexing from a tar file is possible:

python index_fasta.py oa_ornAna1_softmasked ornAna1.tar.gz > oa_ornAna1_softmasked.log





Indexing from stdin requires to use the - place-holder:

zcat ornAna1.fa.gz | python index_fasta.py oa_ornAna1_softmasked - > oa_ornAna1_softmasked.log







Usage

Type:

cgat index_genome DATABASE [SOURCE...|-] [OPTIONS]
cgat index_genome DATABASE [SOURCE...|-] --compression=COMPRESSION --random-access-points=100000





To create indexed DATABASE from SOURCE. Supply - as SOURCE to read from stdin.
If the output is to be compressed, a spacing for the random access points must
be supplied.

Type:

cgat index_genome DATABASE --extract=CONTIG:[STRAND]:START:END





To extract the bases on the STRAND strand, between START to END from
entry CONTIG, from DATABASE.



Command line options



usage: index-fasta [-h] [--version] [-e EXTRACT]
                   [-i {one-forward-open,zero-both-open}] [-s SYNONYMS] [-b]
                   [--benchmark-num-iterations BENCHMARK_NUM_ITERATIONS]
                   [--benchmark-fragment-size BENCHMARK_FRAGMENT_SIZE]
                   [--verify VERIFY]
                   [--verify-iterations VERIFY_NUM_ITERATIONS]
                   [--file-format {fasta,auto,fasta.gz,tar,tar.gz}] [-a]
                   [--allow-duplicates] [--regex-identifier REGEX_IDENTIFIER]
                   [--force-output] [-t {solexa,phred,bytes,range200}]
                   [-c {lzo,zlib,gzip,dictzip,bzip2,debug}]
                   [--random-access-points RANDOM_ACCESS_POINTS]
                   [--compress-index] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
index-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_fasta.py - compare contents of two fasta files
    

    

    

    
 
  

    
      
          
            
  
diff_fasta.py - compare contents of two fasta files


	Tags

	Genomics Sequences FASTA Comparison






Purpose

This script takes two sets of fasta sequences and matches the
identifiers. It then compares the sequences with the same identifiers
and, depending on the output options selected, outputs



	which sequences are missing


	which sequences are identical


	which sequences are prefixes/suffixes of each other







An explanatory field is appended to output sequence identifiers.
An explanation of the different field values is provided in the log.



Options


	-s, --correct-gap-shift

	This option will correct shifts in alignment gaps between
two sequences being compared



	-1, --pattern1

	regular expression pattern to extract identifier from in sequence 1



	-2, --pattern2

	regular expression pattern to extract identifier from in sequence 2





Depending on the option --output-section the following are output:



	diff
	identifiers of sequences that are different



	seqdiff
	identifiers of sequences that are different plus sequence



	missed
	identifiers of seqences that are missing from one set or the other








This script is of specialized interest and has been used
in the past to check if ENSEMBL gene models had been
correctly mapped into a database schema.



Usage

Example:

cat a.fasta | head

>ENSACAP00000004922
MRSRNQGGESSSSGKFSKSKPIINTGENQNLQEDAKKKNKSSRKEE ...
>ENSACAP00000005213
EEEEDESNNSYLYQPLNQDPDQGPAAVEETAPSTEPALDINERLQA ...
>ENSACAP00000018122
LIRSSSMFHIMKHGHYISRFGSKPGLKCIGMHENGIIFNNNPALWK ...

python diff_fasta.py --output-section=missed --output-section=seqdiff a.fasta b.fasta

cat diff.out

# Legend:
# seqs1:          number of sequences in set 1
# seqs2:          number of sequences in set 2
# same:           number of identical sequences
# diff:           number of sequences with differences
# nmissed1:       sequences in set 1 that are not found in set 2
# nmissed2:       sequences in set 2 that are not found in set 1
# Type of sequence differences
# first:          only the first residue is different
# last:           only the last residue is different
# prefix:         one sequence is prefix of the other
# selenocysteine: difference due to selenocysteines
# masked:         difference due to masked residues
# fixed:          fixed differences
# other:          other differences





Type:

python diff_fasta.py --help





for command line help.



Command line options



usage: diff-fasta [-h] [--version] [-s] [-1 PATTERN1] [-2 PATTERN2]
                  [-o {diff,missed,seqdiff}] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
diff-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csvs2csv.py - join tables
    

    

    

    
 
  

    
      
          
            
  
csvs2csv.py - join tables


	Tags

	Python






Purpose

This script reads several tab-separated tables and joins them.


Note

working with multiple columns per table and sorting is
not implemented correctly and likely to fail.





Usage

Example:

python combine_tables.py --help





Type:

python combine_tables.py --help





for command line help.



Command line options



usage: csvs2csv [-h] [--version] [-t] [-i] [-m MISSING_VALUE]
                [--header-names HEADERS] [-c COLUMNS] [-g GLOB] [-s SORT] [-e]
                [--sort-keys {numeric,alphabetic}] [--keep-empty]
                [--add-file-prefix] [--regex-filename REGEX_FILENAME]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
csvs2csv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv2csv.py - operate on tables
    

    

    

    
 
  

    
      
          
            
  
csv2csv.py - operate on tables


	Tags

	Python






Purpose

operate on tables.



Usage

Example:

python csv2csv.py --help





Type:

python csv2csv.py --help





for command line help.



Command line options



usage: csv2csv [-h] [--version] [-s SORT] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv2csv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv2db.py - upload table to database
    

    

    

    
 
  

    
      
          
            
  
csv2db.py - upload table to database


	Tags

	Python






Purpose

create a table from a csv separated file and load data into it.

This module supports backends for postgres and sqlite3. Column types are
auto-detected.

Read a table from stdin and create an sqlite3 database. By default,
the database will reside in a file called csvdb and in a table csv.


Todo

Use file import where appropriate to speed up loading. Currently, this is
not always the case.





Usage

Example:

python csv2db.py -b sqlite < stdin





Type:

python csv2db.py --help





for command line help.



Command line options



usage: csv2db [-h] [--version] [--csv-dialect DIALECT] [-m MAP] [-t TABLENAME]
              [-H HEADER_NAMES] [--replace-header] [-l]
              [--chunk-size CHUNK_SIZE] [--ignore-column IGNORE_COLUMNS]
              [--rename-column RENAME_COLUMNS] [--first-column FIRST_COLUMN]
              [-e] [-i INDICES] [-a] [--retry] [--append] [--utf8]
              [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
              [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
              [--log-config-filename LOG_CONFIG_FILENAME]
              [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG] [-E STDERR]
              [-S STDOUT] [--database-url DATABASE_URL]
              [--database-schema DATABASE_SCHEMA]
csv2db: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_cut.py - select columns from a table
    

    

    

    
 
  

    
      
          
            
  
csv_cut.py - select columns from a table


	Tags

	Python






Purpose

extract named columns from a csv formatted table


Todo

describe purpose of the script.





Usage

Extract the two columns gene and length from a table in standard input:

python csv_cut.py gene length < stdin





The script permits the use of patterns. For example, the command will
select the column gene and all columns that contain the part ‘len’:

python csv_cut.py gene %len% < stdin





Type:

python csv_cut.py --help





for command line help.



Command line options



usage: csv-cut [-h] [-r] [-u] [-l] [-f FILENAME_FIELDS] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-cut: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_intersection.py - intersect two tables
    

    

    

    
 
  

    
      
          
            
  
csv_intersection.py - intersect two tables


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python csv_intersection.py --help





Type:

python csv_intersection.py --help





for command line help.



Command line options



usage: csv-intersection [-h] [--version] [-u] [--timeit TIMEIT_FILE]
                        [--timeit-name TIMEIT_NAME] [--timeit-header]
                        [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                        [--log-config-filename LOG_CONFIG_FILENAME]
                        [--tracing {function}] [-? ?]
                        [--csv-dialect CSV_DIALECT] [-I STDIN] [-L STDLOG]
                        [-E STDERR] [-S STDOUT]
csv-intersection: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_rename.py - rename columns in a table
    

    

    

    
 
  

    
      
          
            
  
csv_rename.py - rename columns in a table


	Tags

	Python






Purpose

rename columns in a csv file



Usage

Example:

csv_rename.py gene=id < stdin





Type:

python csv_rename.py --help





for command line help.



Command line options



usage: csv-rename [-h] [--version] [-r] [-u] [-f FILENAME_FIELDS]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
                  [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-rename: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_set.py - set operations on a table
    

    

    

    
 
  

    
      
          
            
  
csv_set.py - set operations on a table


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python csv_set.py --help





Type:

python csv_set.py --help





for command line help.



Command line options



usage: csv-set [-h] [--version] [-u] [-1 JOIN_FIELDS1] [-2 JOIN_FIELDS2]
               [-m {intersection,rest,union}] [--timeit TIMEIT_FILE]
               [--timeit-name TIMEIT_NAME] [--timeit-header]
               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-set: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cat_tables.py - concatenate tables
    

    

    

    
 
  

    
      
          
            
  
cat_tables.py - concatenate tables


	Tags

	Python






Purpose

concatenate tables. Headers of subsequent files are ignored.



Usage

Type:

python <script_name>.py --help





for command line help.



Command line options



usage: cat-tables [-h] [--version] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
cat-tables: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    table2table.py - operate on tables
    

    

    

    
 
  

    
      
          
            
  
table2table.py - operate on tables


	Tags

	Python






Purpose

This script implements a few methods for manipulating tables.


Methods working on all tables:


	transpose
	transpose a table



	split-fields
	Split muliple-value fields in each row at --separator. Output
multiple rows with all combinations.



	group
	Group values by column



	join-column
	Join rows in a table by columns



	expand-table
	If a field in a row contains multiple values,
the row is expanded into multiple rows such
that all values have space.



	flatten-table
	Output a table as row/column/value tuples.



	as-column
	Output table as a single column. Colums in the original table are
appended and output.



	collapse-table
	Collapse a table of two columns with row names in the first
column. Outputs a table with multiple columns for each row name.







Methods for numerical columns

Some methods make only sense for columns containing numerical values.
If a table contains both numerical and non-numerical data, the
numerical columns can be specified by the --columns option.


	normalize-by-value
	divide all cells in a table by a value



	multiply-by-value
	multiply all cells in a table by a value



	lower-bound
	replace all cells with a value of less than lower bound with the lower
bound.



	upper-bound
	replace all cells with a value of more than upper bound with the upper
bound.



	normalize-by-table
	divide each cell in a table with the corresponding entry in a secondary
table.



	normalize-by-max
	divide table columns by maximum per column



	kullback-leibler
	compute kullback-leibler divergence between two columns. Compute
both D(a||b), D(b||a) and (D(a||b) + D(b||a)) / 2



	rank
	substitute cells with their ranks in a column



	fdr
	compute an FDR over selected columns. Replaces the columns
with the qvalues.








Usage

Example:

python table2table.py --help





Type:

python table2table.py --help





for command line help.



Command line options



usage: table2table [-h] [--version]
                   [-m {transpose,normalize-by-max,normalize-by-value,multiply-by-value,percentile,remove-header,normalize-by-table,upper-bound,lower-bound,kullback-leibler,expand,compress,fdr,grep,randomize-rows}]
                   [-s SCALE] [-f FORMAT] [-p PARAMETERS] [-t] [--transpose]
                   [--set-transpose-field SET_TRANSPOSE_FIELD]
                   [--transpose-format {default,separated}] [--expand]
                   [--no-headers] [--columns COLUMNS] [--file FILE] [-d DELIM]
                   [-V] [--sort-by-rows SORT_ROWS] [-a VALUE]
                   [--group GROUP_COLUMN]
                   [--group-function {min,max,sum,mean,stats,cat,uniq}]
                   [--join-table JOIN_COLUMN]
                   [--collapse-table COLLAPSE_TABLE]
                   [--join-column-name JOIN_COLUMN_NAME] [--flatten-table]
                   [--as-column] [--split-fields] [--separator SEPARATOR]
                   [--fdr-method {BH,bonferroni,holm,hommel,hochberg,BY}]
                   [--fdr-add-column FDR_ADD_COLUMN] [--id-column ID_COLUMN]
                   [--variable-name VARIABLE_NAME] [--value-name VALUE_NAME]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
table2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    data2histogram.py - histogram data in a table
    

    

    

    
 
  

    
      
          
            
  
data2histogram.py - histogram data in a table


	Tags

	Python






Purpose

This script computes histograms over one or more
columns of a table.



Usage

Example:

python data2histogram.py --help





Type:

python data2histogram.py --help





for command line help.



Command line options



usage: data2histogram [-h] [-r RANGE] [-b BIN_SIZE] [-i] [--no-null]
                      [--no-titles] [-c COLUMNS] [--min-data MIN_DATA]
                      [--min-value MIN_VALUE] [--max-value MAX_VALUE]
                      [--no-empty-bins] [--with-empty-bins] [--normalize]
                      [--cumulative] [--reverse-cumulative]
                      [--header-names HEADERS] [--ignore-out-of-range]
                      [--missing-value MISSING_VALUE] [--use-dynamic-bins]
                      [--on-the-fly] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
data2histogram: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    split_file.py - split a file into parts
    

    

    

    
 
  

    
      
          
            
  
split_file.py - split a file into parts


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python split_file.py --help





Type:

python split_file.py --help





for command line help.



Command line options



python /home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat < stdin > stdout

split a file into chunks.

OPTIONS:
-h, --help                      print this message.
-v, --verbose=                  loglevel.
-r, --split-regex               split at regular expression
-a, --after                     split after match
-s, --skip                      do not echo match
-p, --pattern-output            pattern of output files (has to contain s)
-c, --column=                   split according to column
-m, --map=                      split according to map
-d, --dry-run                   echo files that would be created,
                                but do not create any.
-e, --header-names                    add header to each file
-r, --remove-key                remove key column
-append                         append data to existing files.
--pattern-identifier            if given, use this pattern to extract
                                id from column.
--chunk-size                    Number of matching records in each output file
--version                       output version information
 option -? not recognized







            

          

      

      

    

  

  
    
    

    cgat_script_template.py - template for cgat scripts
    

    

    

    
 
  

    
      
          
            
  
cgat_script_template.py - template for cgat scripts


	Author

	


	Tags

	Python






Purpose



Usage

Example:

python cgat_script_template.py





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: cgat-script-template [-h] [-t TEST] [--timeit TIMEIT_FILE]
                            [--timeit-name TIMEIT_NAME] [--timeit-header]
                            [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                            [--log-config-filename LOG_CONFIG_FILENAME]
                            [--tracing {function}] [-? ?] [-I STDIN]
                            [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-script-template: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2UniquePairs.py - filter/report uniquely mapped read pairs from a (bwa!) bam-file
    

    

    

    
 
  

    
      
          
            
  
bam2UniquePairs.py - filter/report uniquely mapped read pairs from a (bwa!) bam-file


	Tags

	Genomics NGS






Purpose

Utility script to report and/or filter out “uniquely mapped” properly
paired reads

Reports:


	The percentage of properly mapped read pairs with at least one
uniquely mapped (XT=U) read


	The percentage of properly mapped read pairs with at least one best
mapped (X0-1) read


	The percentage of properly mapped read pairs with at least one
uniquely or best mapped (X0-1) read




If outfile is specified, reads are emitted when they are properly
paired and the pair has at least one read that is either best or
uniquely mapped.

Duplication is ignored.

Only BWA is supported.

TODO: cache and emit reads rather than iterating over the samfile twice…



usage: bam2UniquePairs [-h] [--version] [-f FILENAME] [-a ALIGNER] [-r REPORT]
                       [-o OUTFILE] [--timeit TIMEIT_FILE]
                       [--timeit-name TIMEIT_NAME] [--timeit-header]
                       [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?]
                       [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                       [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2UniquePairs: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2bam.py - modify bam files
    

    

    

    
 
  

    
      
          
            
  
bam2bam.py - modify bam files


Purpose

This script reads a bam formatted file from stdin, performs an
action (see methods below) then outputs a modified bam
formatted file on stdout.


Note

You need to redirect logging information to a file (via -L) or turn it off
via -v 0 in order to get a valid sam/bam file.





Documentation

The script implements the following methods:

set-nh


set the NH flag. Some tools (bowtie, bwa) do not set the NH flag.
If set, this option will set the NH flag (for mapped reads).
This option requires the bam/sam file to be sorted by read name.




unset-unmapped_mapq


some tools set the mapping quality of unmapped reads. This
causes a violation in the Picard tools.




filter


remove alignments based on a variety of flags. The filtering method
is determined by the --filter-method option. These may be
unique, non-unique, mapped, NM or CM.  If
unique is set, only uniquely mapping reads will be output. If
non-unique is set then only multi-mapping reads will be
output. This method first checks for the NH flag - if set, a unique
match should have at most NH=1 hits.  If not set, the method checks
for BWA flags. Currently it checks if X0 is set (X0=Number of best
hits found by BWA).  If mapped is given, unmapped reads will be
removed. If NM or CM is set, the alignment of reads in two
sam files (input and reference) is compared and only reads with a
lower number of mismatches in the input compared to the reference
sam file will be kept. If CM is set, the colourspace mismatch
tag (for ABI Solid reads) will be used to count differences to the
reference sam file. By default, the NM (number of mismatches)
tag is used. The tag that is used needs to present in both input
sam file and the reference sam file. If unique is given this
wil NOT remove any unmapped reads.  This can be achieved by
providing the filter option twice, once each with mapped
and unique.


Note

The filter methods can’t currently combined with any of
the other methods - this is work in progress.






strip-sequence


remove the sequence from all reads in a bam-file. Note that
stripping the sequence will also remove the quality scores.
Stripping is not reversible if the read names are not unique.




strip-quality


remove the quality scores from all reads in a bam-file.
Stripping is not reversible if the read names are not unique.




set-sequence


set the sequence and quality scores in the bam file to some dummy
values (‘A’ for sequence, ‘F’ for quality which is a valid score in
most fastq encodings. Necessary for some tools that can not work
with bam-files without sequence.




unstrip


add sequence and quality scores back to a bam file. Requires a
fastq formatted file with the sequences and quality scores
to insert.




unset-unmapped-mapq


sets the mapping quality of unmapped reads to 0.




keep-first-base


keep only the first base of reads so that read counting tools will
only consider the first base in the counts




downsample-single


generates a downsampled bam file by randomly subsampling
reads from a single ended bam file. The downsmpling
retains multimapping reads. The use of this requires downsampling
parameter to be set and optionally randomseed.




downsample-paired


generates a downsampled bam file by randomly subsampling
reads from a paired ended bam file. The downsampling
retains multimapping reads. The use of this requires downsampling
parameter to be set and optionally randomseed.




add-sequence-error


add a certain amount of random error to read sequences. This method
picks a certain proportion of positions within a read’s sequence
and alters the nucleotide to a randomly chosen alternative. The
model is naive and applies uniform probabilities for positions and
nucleotides. The method does not update base qualities, the
alignment and the NM flag. As a result, error rates that are
computed via the NM flag will be unaffected. The error rate is set
by –error-rate.




By default, the script works from stdin and outputs to stdout.



Usage

For example:

cgat bam2bam --method=filter --filter-method=mapped < in.bam > out.bam





will remove all unmapped reads from the bam-file.

Example for running downsample:

cgat bam2bam –method=downsample-paired –downsample=30000
–randomseed=1 -L out.log < Paired.bam > out.bam

Type:

cgat bam2bam --help





for command line help.



Command line options



usage: bam2bam [-h] [--version]
               [-m {filter,keep-first-base,set-nh,set-sequence,strip-sequence,strip-quality,unstrip,unset-unmapped-mapq,downsample-single,downsample-paired,add-sequence-error}]
               [--strip-method {all,match}]
               [--filter-method {NM,CM,mapped,unique,non-unique,remove-list,keep-list,error-rate,min-read-length,min-average-base-quality}]
               [--reference-bam-file REFERENCE_BAM] [--force-output]
               [--output-sam] [--first-fastq-file FASTQ_PAIR1]
               [--second-fastq-file FASTQ_PAIR2] [--downsample DOWNSAMPLE]
               [--filename-read-list FILENAME_READ_LIST]
               [--error-rate ERROR_RATE]
               [--minimum-read-length MINIMUM_READ_LENGTH]
               [--minimum-average-base-quality MINIMUM_AVERAGE_BASE_QUALITY]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bam2bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2bed.py - convert bam formatted file to bed formatted file
    

    

    

    
 
  

    
      
          
            
  
bam2bed.py - convert bam formatted file to bed formatted file


	Tags

	Genomics NGS Intervals BAM BED Conversion






Purpose

This tool converts BAM files into BED files supplying the intervals
for each read in the BAM file.  BAM files must have a corresponding
index file ie. example.bam and example.bam.bai

For example:

samtools view example.bam

READ1    163    1      13040   15     76M    =      13183   219     ...
READ1    83     1      13183   7      76M    =      13040   -219    ...
READ2    147    1      13207   0      76M    =      13120   -163    ...

python bam2bed.py example.bam

1       13039   13115   READ1     15      +
1       13119   13195   READ2     0       +
1       13182   13258   READ1     7       -
1       13206   13282   READ2     0       -





By default, bam2bed outputs each read as a separate interval.  With
the option --merge-pairs paired-end reads are merged and output as
a single interval. The strand is set according to the first read in a
pair.



Usage

cgat bam2bed BAMFILE [--merge-pairs] [options]





operates on the file BAMFILE:

cgat bam2bed [--merge-pairs] [options]





operates on the stdin as does:

cgat bam2bed -I BAMFILE [--merge-pairs] [options]





To merge paired-end reads and output fragment interval ie. leftmost
mapped base to rightmost mapped base:

cat example.bam | cgat bam2bed --merge-pairs

1       13119   13282   READ2     0       +
1       13039   13258   READ1     7       +





To use merge pairs on only a region of the genome use samtools view:

samtools view -ub example.bam 1:13000:13100 | cgat bam2bed --merge-pairs





Note that this will select fragments were the first read-in-pair is in
the region.



Options


	-m, --merge-pairs

	Output one region per fragment rather than one region per read,
thus a single region is create stretching from the start of the
frist read in pair to the end of the second.

Read pairs that meet the following criteria are removed:


	Reads where one of the pair is unmapped


	Reads that are not paired


	Reads where the pairs are mapped to different chromosomes


	Reads where the the insert size is not between the max and
min (see below)









Warning

Merged fragements are always returned on the +ve strand.
Fragement end point is estimated as the alignment start position
of the second-in-pair read + the length of the first-in-pair
read. This may lead to inaccuracy if you have an intron-aware
aligner.




	--max-insert-size, --min-insert-size

	The maximum and minimum size of the insert that is allowed when
using the –merge-pairs option. Read pairs closer to gether or futher
apart than the min and max repsectively are skipped.



	-b, --bed-format

	What format to output the results in. The first n columns of the bed
file will be output.





Type:

python bam2bed.py --help





for command line help.



Command line options



usage: bam2bed [-h] [--version] [-m] [--max-insert-size MAX_INSERT_SIZE]
               [--min-insert-size MIN_INSERT_SIZE] [--bed-format {3,4,5,6}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
bam2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2fastq.py - output fastq files from a bam-file
    

    

    

    
 
  

    
      
          
            
  
bam2fastq.py - output fastq files from a bam-file


	Tags

	Genomics NGS Sequences BAM FASTQ Conversion






Purpose

This script takes a bam formatted file and converts to it to
one or two fastq formatted files for single-end or paired-end
data, respectively.

For paired-end data, the first fastq file contains the first read of a
read pair and the other contains the second read of read pair.

Example

For example:

cat in.bam cgat bam2fastq out.1.fastq.gz out.2.fastq.gz





This command converts the bam formatted file in.bam into
fastq files containing forward reads (out.1.fastq.gz) and
reverse reads (out.2.fastq.gz).  The output files can alternatively
supplied via the option --output-pattern-filename. The statement
below will create the same two output files:

cat in.bam cgat bam2fastq --output-filename-pattern=out.%s.fastq.gz





Type:

python bam2fastq.py --help





for command line help.



Command line options



usage: bam2fastq [-h] [--version] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam2peakshape.py - compute peak shape features from a bam-file
    

    

    

    
 
  

    
      
          
            
  
bam2peakshape.py - compute peak shape features from a bam-file


	Tags

	Genomics NGS Intervals BAM BED Summary






Purpose

This script takes a bed formatted file with regions of
interest, for example binding intervals from a ChIP-Seq
experiment. Using a collection of aligned reads is a bam
formatted file or bigwig formatted file, the script outputs a
collection of features describing the peak shape.

This script is designed with a slight emphasis on ChIP-Seq datasets.
The main reason that this script is better suited for ChIP-Seq is
that(1) it is able to center the counting window at the summit of
every individual peak; (2) it is also able to use the control ChIP-Seq
library to enable side-by-side comparison of treatment vs control;(3)
it can randomly shift the set of input regions to generate a
artificial set of regions, in the absence of real ChIP-Seq control
library, the random regions can provide a peaks profile that can be
used as the control.

For example, given the peaks regions defined by analyzing some
ChIP-Seq dataset (e.g. by using MACS), and without the need to use any
additional genomic annotations (e.g. ENSEMBL, refseq), we can
visualise the binding profiles of transcriptionfactors ChIP-Seq data
relative to the center of each peak regions.

The script outputs a tab-separated table on stdout containing features
for each interval. A peak is defined as the location of the highest
density in an interval. The width of the peak (peak_width) is defined
as the region around the peak in which the density does not drop below
a threshold of peak_heigt * 90%.



Usage


Detailed usage example

The following command will generate the peak shape plot for the peak
regions defined in onepeak.bed, using the reads stored in
small.bam.  The command will also create a profile for the
control library.  The control library in this example is re-using the
same reads file small.bam, however, in your actual experiment,
it should be a different library (the input library for this ChIP-Seq
experiment).:

python ./scripts/bam2peakshape.py         ./tests/bam2peakshape.py/small.bam         ./tests/bam2peakshape.py/onepeak.bed         --control-bam-file=./tests/bam2peakshape.py/small.bam         --use-interval         --normalize-transcript







Output files

Among the features output are:







	Column

	Content



	peak_height

	number of reads at peak



	peak_median

	median coverage compared to peak height



	interval_width

	width of interval



	peak_width

	width of peak



	bins

	bins for a histogram of densities within the interval.



	npeaks

	number of density peaks in interval.



	peak_center

	point of highest density in interval



	peak_relative_pos

	point of highest density in interval coordinates



	counts

	counts for a histogram of densities within the interval



	furthest_half_heigh

	Distance of peak center to furthest half-height position



	closest_half_height

	Distance of peak center to closest half-height position






Additionally, the script outputs a set of matrixes with densities over
intervals that can be used for plotting. The default filenames are
(matrix|control)_<sortorder>.tsv.gz, The names can be controlled
with the --output-filename-pattern option.

Type:

python bam2peakshape.py --help





for command line help.




Options


Option: Shift

shift the each read by a certain distance, because in a ChIP-Seq
experment, the read is always at the edge of an sonicated fragment,
the actual binding site is usually L/2 distance away from the read,
where L is the length of sonicated fragment (determined either
experimentally or computationally).

This option is used only if the input reads are in bam formatted file.
If input reads are bigwig formatted file, this option is ignored.



Option: Random shift

randomly shift the set of input regions to generate a artificial set
of regions. In the absence of real ChIP-Seq control library, the
random regions can provide a peaks profile that can be used as the
control.



Option: Centring method

“reads” will output in the way that the summit of the peaks are
aligned. “middle” will output in the way that the middle of the input
bed intervals are aligned.



Option: Only interval

Only count reads that are in the interval as defined by the input bed file.



Option: normalization=sum

normalize counts such that the sum of all counts in all features are
exactly 1000000.

The detail normalization algorithm as follows: norm = sum(all counts
in all features)/1000000.0 normalized count = normalized count / norm


Todo

paired-endedness is not fully implemented.






Command line options



usage: bam2peakshape [-h] [--version] [-f {bam,bigwig}] [-o] [-w WINDOW_SIZE]
                     [-b BIN_SIZE] [--smooth-method {none,sum,sg}]
                     [-s {peak-height,peak-width,unsorted,interval-width,interval-score}]
                     [-c CONTROL_FILES] [-r] [-e {reads,middle}]
                     [-n {none,sum}] [--use-strand] [-i SHIFT]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
bam2peakshape: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    Purpose
    

    

    

    
 
  

    
      
          
            
  compute stats from a bam-file


Purpose

This script takes a bam file as input and computes a few metrics by
iterating over the file. The metrics output are:







	Category

	Content



	total

	total number of alignments in bam file



	alignments_mapped

	alignments mapped to a chromosome (bam
flag)



	alignments_unmapped

	alignments unmapped (bam flag)



	qc_fail

	alignments failing QC (bam flag)



	mate_unmapped

	alignments in which the mate is unmapped
(bam flag)



	reverse

	alignments in which read maps to reverse
strand (bam flag)



	mate_reverse

	alignments in which mate maps to reverse
strand (bam flag)



	proper_pair

	alignments in which both pairs have been
mapped properly (according to the mapper)
(bam flag)



	read1

	alignments for 1st read of pair (bam flag)



	paired

	alignments of reads that are paired (bam
flag)



	duplicate

	read is PCR or optical duplicate (bam
flag)



	read2

	alignment is for 2nd read of pair (bam
flag)



	secondary

	alignment is not primary alignment



	alignments_duplicates

	number of alignments mapping to the same
location



	alignments_unique

	number of alignments mapping to unique
locations



	reads_total

	number of reads in file. Either given via
–num-reads or deduc ed as the sum of
mappend and unmapped reads



	reads_mapped

	number of reads mapping in file. Derived
from the total number o f alignments and
removing counts for multiple
matches. Requires the NH flag to be set
correctly.



	reads_unmapped

	number of reads unmapped in file. Assumes
that there is only one
entry per unmapped read.



	reads_missing

	number of reads missing, if number of
reads given by –input-rea ds. Otherwise
0.



	pairs_total

	number of total pairs - this is the number
of reads_total divided by two. If there
were no pairs, pairs_total will be 0.



	pairs_mapped

	number of mapped pairs - this is the same
as the number of proper pairs.






Additionally, the script outputs histograms for the following tags and
scores.


	NM: number of mismatches in alignments.


	NH: number of hits of reads.


	mapq: mapping quality of alignments.





Supplying a fastq file

If a fastq file is supplied (--fastq-file), the script will
compute some additional summary statistics. However, as it builds a dictionary
of all sequences, it will also require a good  amount of memory. The additional
metrics output are:







	Category

	Content



	pairs_total

	total number of pairs in input data



	pairs_mapped

	pairs in which both reads map



	pairs_unmapped

	pairs in which neither read maps



	pairs_proper_unique

	pairs which are proper and map uniquely.



	pairs_incomplete_unique

	pairs in which one of the reads maps
uniquely, but the other does not map.



	pairs_incomplete_multimapping

	pairs in which one of the reads maps
uniquely, but the other maps to multiple
locations.



	pairs_proper_duplicate

	pairs which are proper and unique, but
marked as duplicates.



	pairs_proper_multimapping

	pairs which are proper, but map to
multiple locations.



	pairs_not_proper_unique

	pairs mapping uniquely, but not flagged
as proper



	pairs_other

	pairs not in any of the above categories






Note that for paired-end data, any 
  
    
    

    beds2counts - compute overlap stats between multiple bed files
    

    

    

    
 
  

    
      
          
            
  
beds2counts - compute overlap stats between multiple bed files


	Tags

	Genomics Intervals Comparison BED Counting






Purpose

This script takes multiple bed files e.g. from multiple samples from
the same experiment. It assesses the overlap between samples and
outputs a count for each merged interval corresponding to the number
of samples that a particular interval was found in.

Example

For example if the command:

cgat bed2counts a.bed b.bed c.bed > output.tsv





is run, where a.bed-c.bed look like:

                 1         2         3         4
       012345678901234567890123456789012345678901234
a.bed: -------          -----               -------
b.bed:      -----        --
c.bed:  ---

Union: ----------       -----               -------





Then output.tsv will look like:

contig      start   end     count
chr1        0       7       3
chr1        17      22      2
chr1        37      44      1







Options

The only option other than the standard cgat options is -i, –bed-file this
allows the input files to be provided as a comma seperated list to the option
rather than a space delimited set of positional arguements. It is present
purely for galaxy compatibility.



Usage


cgat beds2counts BED [BED …] [OPTIONS]






Command line options



usage: beds2counts [-h] [--version] [--bed-file bed] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]

beds2counts - compute overlap stats between multiple bed files
=================================================================

:Tags: Genomics Intervals Comparison BED Counting

Purpose
-------

This script takes multiple bed files e.g. from multiple samples from
the same experiment. It assesses the overlap between samples and
outputs a count for each merged interval corresponding to the number
of samples that a particular interval was found in.

Example
-------

For example if the command::

    cgat bed2counts a.bed b.bed c.bed > output.tsv

is run, where a.bed-c.bed look like::

                     1         2         3         4
           012345678901234567890123456789012345678901234
    a.bed: -------          -----               -------
    b.bed:      -----        --
    c.bed:  ---

    Union: ----------       -----               -------

Then output.tsv will look like::

    contig	start	end	count
    chr1	0	7	3
    chr1	17	22	2
    chr1	37	44	1

Options
-------

The only option other than the standard cgat options is -i, --bed-file this
allows the input files to be provided as a comma seperated list to the option
rather than a space delimited set of positional arguements. It is present
purely for galaxy compatibility.

Usage
-----

    cgat beds2counts BED [BED ...] [OPTIONS]

Command line options
--------------------

optional arguments:
  -h, --help            show this help message and exit
  --version             show program's version number and exit
  --bed-file bed        supply list of bed files (default: [])

Script timing options:
  --timeit TIMEIT_FILE  store timeing information in file. (default: None)
  --timeit-name TIMEIT_NAME
                        name in timing file for this class of jobs (default:
                        all)
  --timeit-header       add header for timing information. (default: None)

Common options:
  --random-seed RANDOM_SEED
                        random seed to initialize number generator with
                        (default: None)
  -v LOGLEVEL, --verbose LOGLEVEL
                        loglevel. The higher, the more output. (default: 1)
  --log-config-filename LOG_CONFIG_FILENAME
                        Configuration file for logger. (default: logging.yml)
  --tracing {function}  enable function tracing. (default: None)
  -? ?                  output short help (command line options only.
                        (default: None)

Input/output options:
  -I STDIN, --stdin STDIN
                        file to read stdin from. (default: <_io.TextIOWrapper
                        name='<stdin>' mode='r' encoding='UTF-8'>)
  -L STDLOG, --log STDLOG
                        file with logging information. (default:
                        <_io.TextIOWrapper name='<stdout>' mode='w'
                        encoding='UTF-8'>)
  -E STDERR, --error STDERR
                        file with error information. (default:
                        <_io.TextIOWrapper name='<stderr>' mode='w'
                        encoding='UTF-8'>)
  -S STDOUT, --stdout STDOUT
                        file where output is to go. (default:
                        <_io.TextIOWrapper name='<stdout>' mode='w'
                        encoding='UTF-8'>)







            

          

      

      

    

  

  
    
    

    bed2fasta.py - get sequences from bed file
    

    

    

    
 
  

    
      
          
            
  
bed2fasta.py - get sequences from bed file


	Tags

	Genomics Intervals Sequences Conversion BED FASTA






Purpose

This script outputs nucleotide sequences for intervals within
a bed formatted file using a corresponding genome file.



Usage

A required input to bed2fasta.py is a cgat indexed genome. To obtain an
idexed human reference genome we would type


	Example::
	cat hg19.fasta | index_fasta.py hg19 > hg19.log





This file would then serve as the –genome-file when we wish to extract
sequences from a bed formatted file.

For example we could now type:

cat in.bed | python bed2fasta.py --genome-file hg19 > out.fasta





Where we take a set of genomic intervals (e.g. from a human ChIP-seq experiment)
and output their respective nucleotide sequences.

Type:

python bed2fasta.py --help





for command line help.



Command line options



usage: bed2fasta [-h] [-g GENOME_FILE] [-m {dust,dustmasker,softmask,none}]
                 [--output-mode {intervals,leftright,segments}]
                 [--min-sequence-length MIN_LENGTH]
                 [--max-sequence-length MAX_LENGTH]
                 [--extend-at {none,3,5,both,3only,5only}]
                 [--extend-by EXTEND_BY] [--use-strand] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bed2stats.py - summary of bed file contents
    

    

    

    
 
  

    
      
          
            
  
bed2stats.py - summary of bed file contents


	Tags

	Genomics Intervals Summary BED






Purpose

This script takes a bed-formatted file as input and outputs the number
of intervals and bases in the bed file. Counts can be subdivided by setting
the --aggregate-by command line option:


	contig
	output counts per contig (column 1)



	name
	output counts grouped by the name field in the bed formatted
file (column 4)



	track
	output counts per track in the bed formatted file.





Note that a count of bases usually makes only sense if the intervals
submitted are non-overlapping.

If the option –add-percent is given, an additional column will output
the percent of the genome covered by intervals. This requires a
–genome-file to be given as well.



Usage

To count the number of intervals, type:

cgat bed2table < in.bed













	track

	ncontigs

	nintervals

	nbases



	all

	23

	556

	27800






To count per contig:

cgat bed2table --aggregate=contig < in.bed













	track

	ncontigs

	nintervals

	nbases



	chrX

	1

	11

	550



	chr13

	1

	12

	600



	chr12

	1

	37

	1850



	…

	…

	…

	…






Type:

cgat bed2table --help





for command line help.



Command line options



usage: bed2stats [-h] [-g GENOME_FILE] [-a {name,contig,track,none}] [-p]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bed2stats: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    beds2beds.py - decompose bed files
    

    

    

    
 
  

    
      
          
            
  
beds2beds.py - decompose bed files


	Tags

	Genomics Intervals BED Manipulation






Purpose

This script will decompose a collection of input bedfiles into a
collection of unions or intersections.



Options

Files are collected by a regular expression pattern given to the option
--pattern-identifier.

The script behaviour is determined by the --method option with either of
the following choices:


	merged-combinations
	merge intervals across bed files and only report those
that appear in every file.



	unmerged-combinations
	for each bed file, report intervals that overlap with intervals
in every other bed file.





If the --exclusive-overlap option is set, report exclusive
overlap. Only intervals will be reported that overlap in a pairwise
comparison but do not overlap with intervals in any of the other sets.

This script requires bed files indexed by tabix [http://samtools.sourceforge.net/tabix.shtml/].



Usage

For example, you have ChIP-Seq data for PolII and two transcription
factors tf1 and tf2. The following statement will output four
bed files:

zcat polii.bed.gz | head

chr17    1    100    8    1
chr19   -50    50    6    1
chr19    0    100    1    1
chr19    50   150    1    1
chr19   150   200    2    1
chr19   201   300    3    1

python beds2beds.py polii.bed.gz tf1.bed.gz tf2.bed.gz

zcat tf1.bed.gz | head

chr1    35736     40736    ENST000004173240    -
chr1    60881     65881    ENST000005349900    +
chr1    64090     69090    ENST000003351370    +
chr1    362658    367658   ENST000004264060    +
chr1    622034    627034   ENST000003328310    -
chr1    716405    721405   ENST000003585330    +





The four files contain intervals, that


	have PolII and tf1 present,


	have PolII and tf2 present,


	have tf1 and tf2 present, or


	have PolII and tf1 and tf2 present.




If the –exclusive-overlap option is set, three sets will be output
with intervals that


	have PolII and tf1 present but no tf2,


	have PolII and tf2 present but no tf1,


	have tf1 and tf2 present but no PolII.




Type:

python beds2beds.py --help





for command line help.



Command line options



usage: beds2beds [-h] [--version] [-e] [-p PATTERN_ID]
                 [-m {merged-combinations,unmerged-combinations}]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
beds2beds: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    combine_tables.py - join tables
    

    

    

    
 
  

    
      
          
            
  
combine_tables.py - join tables


	Tags

	Python






Purpose

This script reads several tab-separated tables and joins them into a
single one.


Todo


	Rename to tables2table.py


	Use pandas dataframes for fast IO and merging/joining








Usage

The option --header-names sets the column titles explicitely. Add
--skip-titles if you want to avoid echoing the original title in
the input files.

Example:

python combine_tables.py --help





Type:

python combine_tables.py --help





for command line help.



Command line options



usage: combine-tables [-h] [--version] [-t] [--ignore-titles] [-i]
                      [-m MISSING_VALUE] [--header-names HEADERS] [-c COLUMNS]
                      [-k TAKE] [-g GLOB] [-s SORT] [-e] [-a CAT]
                      [--sort-keys {numeric,alphabetic}] [--keep-empty]
                      [--ignore-empty] [--add-file-prefix] [--use-file-prefix]
                      [--prefixes PREFIXES] [--regex-filename REGEX_FILENAME]
                      [--regex-start REGEX_START] [--regex-end REGEX_END]
                      [--test TEST] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
combine-tables: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_chains.py - compare to chain formatted files
    

    

    

    
 
  

    
      
          
            
  
diff_chains.py - compare to chain formatted files


	Tags

	Genomics GenomeAlignment CHAIN Comparison






Purpose

Compare two genomic alignment files and calculate statistics from the
comparison.



Documentation

Operates on two chain [https://genome.ucsc.edu/goldenPath/help/chain.html] formatted
files.

Outputs a table with the following columns:







	Column

	Content



	contig1

	contig name



	contig2

	contig name



	strand

	strand



	mapped1

	mapped residues



	identical1

	identically mapped residues



	different1

	differently mapped residues



	unique1

	residues mapped only from set1



	pmapped1

	percentage of mapped residues



	pidentical1

	percentage of identically
mapped residues



	pdifferent1

	percentage of differently
mapped residues






Similar columns exist for data set 2



Usage

Example:

cgat diff_chains.py hg19ToMm10v1.chain.over.gz hg19ToMm10v2.chain.over.gz





This will compare the locations that regions within the genome hg19
map to between two different mappings to the genome mm10.

Type:

python diff_chains.py --help





for command line help.



Command line options



usage: diff-chains [-h] [--version] [-m] [-a] [-u] [-r RESTRICT]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
diff-chains: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2variants.py - create sequence variants from a set of sequences
    

    

    

    
 
  

    
      
          
            
  
fasta2variants.py - create sequence variants from a set of sequences


	Tags

	Genomics Sequences Variants Protein FASTA Transformation






Purpose

This script reads a collection of sequences in fasta format
and outputs a table of possible variants. It outputs for each position
in a protein sequence the number of variants.

If the input sequences are nucleotide coding (CDS) sequences, for each
variant a weight is output indicating the number of times that variant
can occur from single nucleotide changes.



Usage

Example:

python fasta2variants.py -I CCDS_nucleotide.current.fna.gz -L CDS.log -S CDS.output -c





This will take a CDS file as input, save the log and output files, and
count variants based on single nucleotide changes using the -c option.

Type:

python fasta2variants.py --help





for command line help.

Compressed (.gz) and various fasta format files (.fasta, .fna) are
accepted. If the -c option is specified and the file is not a CDS
sequence the script will throw an error (‘length of sequence
‘<input_file>’ is not a multiple of 3’).



Command line options



usage: fasta2variants [-h] [--version] [-c] [--timeit TIMEIT_FILE]
                      [--timeit-name TIMEIT_NAME] [--timeit-header]
                      [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                      [--log-config-filename LOG_CONFIG_FILENAME]
                      [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                      [-E STDERR] [-S STDOUT]
fasta2variants: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2fastq.py - manipulate fastq files
    

    

    

    
 
  

    
      
          
            
  
fastq2fastq.py - manipulate fastq files


	Tags

	Genomics NGS Sequences FASTQ Manipulation






Purpose

This script performs manipulations on fastq formatted
files. For example it can be used to change the quality score format
or sample a subset of reads.

The script predominantly is used for manipulation of single fastq
files. However, for some of its functionality it will take paired data
using the --pair-fastq-file and --output-filename-pattern options.
This applies to the sample and sort methods.



Usage


	Example::
	In this example we randomly sample 50% of reads from paired data provided in
two fastq files.


head in.fastq.1

@SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
=@A@9@BAB@;@BABA?=;@@BB<A@9@;@2>@;??
@SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCACCCCCCCC
+SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
=B@9@0>A<B=B=AAA?;*(@A>(@<=*9=9@BA>7
@SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
AGTGAGCAGGGAAACAATGTCTGTCTAAGAATTTGA

head in.fastq.2

+SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
<?@BA?;A=@BA>;@@7###################
@SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
ATTAGTATTATCCATTTATATAATCAATAAAAATGT
+SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
?ABBA2CCBBB2?=BB@C>=AAC@A=CBB#######
@SRR111956.5 HWUSI-EAS618:7:1:39:1305 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+SRR111956.5 HWUSI-EAS618:7:1:39:1305 length=36
AA>5;A>*91?=AAA@@BBA<B=?ABA>2>?A<BB@


	command-line::
	
	cat in.fastq.1 | python fastq2fastq.py
	–method=sample –sample-size 0.5
–pair-fastq-file in.fastq.2
–output-filename-pattern out.fastq.2
> out.fastq.1









head out.fastq.1
@SRR111956.1 HWUSI-EAS618:7:1:27:1582 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+
=@A@9@BAB@;@BABA?=;@@BB<A@9@;@2>@;??
@SRR111956.2 HWUSI-EAS618:7:1:29:1664 length=36
CCCCCCCCCCCCCCCCCCCCCCCCCCCACCCCCCCC
+
=B@9@0>A<B=B=AAA?;*(@A>(@<=*9=9@BA>7
@SRR111956.3 HWUSI-EAS618:7:1:38:878 length=36
AGTGAGCAGGGAAACAATGTCTGTCTAAGAATTTGA
+
<?@BA?;A=@BA>;@@7###################
@SRR111956.4 HWUSI-EAS618:7:1:38:1783 length=36
ATTAGTATTATCCATTTATATAATCAATAAAAATGT
+
?ABBA2CCBBB2?=BB@C>=AAC@A=CBB#######










Options

The following methods are implemented (--method).

change-format



change the quality format to new format given as
target-format. Options are sanger,




solexa, phred64, integer and illumina-1.8




sample


Sub-sample a fastq file. The size of the sample is set by
–sample-size




unique


Remove duplicate reads based on read name




trim3



Trim a fixed number of nucleotides from the 3’ end of reads.
(see --num-bases). Note that there are better tools for




trimming.




trim5



Trim a fixed number of nucleotides from the 5’ end of reads.
(see --num-bases). Note that there are better tools for




trimming.




sort


Sort the fastq file by read name.




renumber-reads


Rename the reads based on pattern given in --pattern-identifier
e.g. --pattern-identifier="read_%010i"




Type:

python fastq2fastq.py --help





for command line help.



Command line options



usage: fastq2fastq [-h] [--version] [-i INPUT_FASTQ_FILE]
                   [--output-removed-tsv OUTPUT_REMOVED_TSV]
                   [--output-stats-tsv OUTPUT_STATS_TSV]
                   [--output-removed-fastq OUTPUT_REMOVED_FASTQ]
                   [-m {filter-N,filter-identifier,filter-ONT,offset-quality,apply,change-format,renumber-reads,sample,sort,trim3,trim5,unique,reverse-complement,grep}]
                   [--set-prefix SET_PREFIX]
                   [--input-filter-tsv INPUT_FILTER_TSV]
                   [--min-average-quality MIN_AVERAGE_QUALITY]
                   [--min-sequence-length MIN_SEQUENCE_LENGTH]
                   [--quality-offset QUALITY_OFFSET]
                   [--target-format {sanger,solexa,phred64,integer,illumina-1.8}]
                   [--guess-format {sanger,solexa,phred64,integer,illumina-1.8}]
                   [--sample-size SAMPLE_SIZE] [--pair-fastq-file PAIR]
                   [--map-tsv-file MAP_TSV_FILE] [--num-bases NBASES]
                   [--seed SEED] [--pattern-identifier RENUMBER_PATTERN]
                   [--grep-pattern GREP_PATTERN] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                   [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
fastq2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2table.py - compute stats on reads in fastq files
    

    

    

    
 
  

    
      
          
            
  
fastq2table.py - compute stats on reads in fastq files


	Tags

	Genomics NGS Sequences FASTQ Annotation






Purpose

This script iterates over a fastq file and outputs
summary statistics for each read.

The output is a tab-delimited text file with the following columns:







	Column

	Content



	read

	read identifier present in input fastq
file



	nfailed

	number of reads that fall below Q10



	nN

	number of ambiguous base calls (N)



	nval

	number of bases in the read



	min

	minimum base quality score for the read



	max

	maximum base quality for the read



	mean

	mean base quality for the read



	median

	median base quality for the read



	stddev

	standard devitation of quality scores
for the read



	sum

	sum of quality scores for the read



	q1

	25th percentile of quality scores for
the read



	q3

	25th percentile of quality scores for
the read








Usage

Example:

cgat fastq2table --guess-format=sanger < in.fastq > out.tsv





In this example we know that our data have quality scores formatted as
sanger. Given that illumina-1.8 quality scores are highly overlapping
with sanger, this option defaults to sanger qualities. In default mode
the script may not be able to distinguish highly overlapping sets of
quality scores.

If we provide two reads to the script:

@DHKW5DQ1:308:D28FGACXX:5:2211:8051:4398
ACAATGTCCTGATGTGAATGCCCCTACTATTCAGATCGCTTAGGGCATGC
+
B1=?DFDDHHFFHIJJIJGGIJGFIEE9CHIIFEGGIIJGIGIGIIDGHI
@DHKW5DQ1:308:D28FGACXX:5:1315:15039:83265
GAATGCCCCTACTATTCAGATCGCTTAGGGCATGCGTCGCATGTGAGTAA
+
@@@FDFFFHGHHHJIIIJIGHIJJIGHGHC9FBFBGHIIEGHIGC>F@FA





we get the following table as output:

















	read

	nfailed

	nN

	nval

	min

	max

	mean

	median

	stddev

	sum

	q1

	q3



	DHKW5DQ1:308:D28FGACXX:5:2211:8051:4398

	0

	0

	50

	16.0000

	41.0000

	37.2000

	38.0000

	4.4900

	1860.0000

	36.0000

	40.0000



	DHKW5DQ1:308:D28FGACXX:5:1315:15039:83265

	0

	0

	50

	24.0000

	41.0000

	37.0200

	38.0000

	3.5916

	1851.0000

	36.0000

	40.0000






Type:

cgat fastq2table --help





for command line help.



Command line options



usage: fastq2table [-h] [--version]
                   [--guess-format {sanger,solexa,phred64,illumina-1.8,integer}]
                   [--target-format {sanger,solexa,phred64,illumina-1.8,integer}]
                   [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                   [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
fastq2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    genome_bed.py - Create a bed file tiling a genome from a fai file
    

    

    

    
 
  

    
      
          
            
  
genome_bed.py - Create a bed file tiling a genome from a fai file


	Tags

	Python





This program takes an indexed genome and creates windows of a certain
size.

It also takes two input parameters: the window/tile size (bases) and
the shift size.  By default the shift size is equal to the window
size.  The default window size is 1000.


Usage


python genome_bed -g <genome.fai> -o <output.bed> -w window size -s shift size






Command line options



usage: genome-bed [-h] [--version] [-g GENOME_FILE] [-w WINDOW] [-s SHIFT]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
genome-bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    index2bed.py - convert indexed fasta file to bed file
    

    

    

    
 
  

    
      
          
            
  
index2bed.py - convert indexed fasta file to bed file


	Tags

	Python






Purpose



Usage

Type:

python <script_name>.py --help





for command line help.



Command line options



usage: index2bed [-h] [--version] [-g GENOME_FILE]
                 [--remove-regex REMOVE_REGEX] [-e GFF_FILE]
                 [-f FIXED_WIDTH_WINDOWS] [--timeit TIMEIT_FILE]
                 [--timeit-name TIMEIT_NAME] [--timeit-header]
                 [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
index2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    medip_merge_intervals.py - merge differentially methylated regions
    

    

    

    
 
  

    
      
          
            
  
medip_merge_intervals.py - merge differentially methylated regions


	Tags

	Python






Purpose

This script takes the output of DESeq or EdgeR and merges
adjacent intervals that show a similar expression change.

Input is data like this:

contig start end treatment_name  treatment_mean  treatment_std   control_name    control_mean    control_std     pvalue  qvalue  l2fold  fold    significant     status
chr1 10000 11000        CD14    32.9785173324   0       CD4     41.7117152603   0       0.199805206526  1.0     0.338926100945  1.26481475319   0       OK
chr1 14000 15000        CD14    9.32978709019   0       CD4     9.31489982941   0       1.0     1.0     -0.00230390372974       0.998404330063  0       OK
chr1 15000 16000        CD14    9.04603350905   0       CD4     9.01484414416   0       1.0     1.0     -0.00498279072069       0.996552150193  0       OK
chr1 16000 17000        CD14    0.457565479197  0       CD4     0.14910378845   0       0.677265200643  1.0     -1.61766129852  0.325863281276  0       OK





The second and third window would be merged, as


	Their methylation levels are within 10% of each other.


	They are both not differentially methylated.




It aggregates the following:


	mean values: average


	std values: max


	pvalue: max


	qvalue: max


	fold: min/max (depending on enrichment/depletion)


	l2fold: min/max (depending on enrichment/depletion)




The analysis outputs bed files with intervals that are
potentially activated in one of the conditions. Windows
with a positive fold change are collected in the treatment,
while windows with a negative fold change are collected in the
control.

For methylation analysis, it might be more interesting
to report windows that are depleted (instead of enriched)
of signal. Thus, if the option --invert is given,
windows with a negative l2fold change are labeled treatment.
Less methylation means that this region is “active” in the
treatment condition.

Note that the input is assumed to be sorted by coordinate.



Usage

Example:

python cgat_script_template.py --help





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: medip-merge-intervals [-h] [--version] [-o MIN_OVERLAP]
                             [-w PATTERN_WINDOW] [-i] [--timeit TIMEIT_FILE]
                             [--timeit-name TIMEIT_NAME] [--timeit-header]
                             [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                             [--log-config-filename LOG_CONFIG_FILENAME]
                             [--tracing {function}] [-? ?]
                             [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN]
                             [-L STDLOG] [-E STDERR] [-S STDOUT]
medip-merge-intervals: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_rebuild_extensions.py - rebuild all cython extensions
    

    

    

    
 
  

    
      
          
            
  
cgat_rebuild_extensions.py - rebuild all cython extensions


	Tags

	Python






Purpose

This script rebuilds all cython extensions in the source directory.

Some scripts in the repository make use of pyximport to compile
associated cython scripts with embedded C code. Theses scripts are
automatically re-compiled if the script has changed, but this process
can fail if:



	the script is executed on a machine without a C-compiler


	some underlying libraries have changed.







Thus, it is safer to rebuild all scripts on a machine with a C compiler
before running a script in production on a cluster, where not all nodes
might be fully configured for compilation.



Usage

Example:

python cgat_rebuild_extensions.py





Type:

python cgat_rebuild_extensions.py --help





for command line help.



Command line options



usage: cgat-rebuild-extensions [-h] [-i TEST_OPTION] [--timeit TIMEIT_FILE]
                               [--timeit-name TIMEIT_NAME] [--timeit-header]
                               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                               [--log-config-filename LOG_CONFIG_FILENAME]
                               [--tracing {function}] [-? ?] [-I STDIN]
                               [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-rebuild-extensions: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    vcf2vcf.py - manipulate vcf files
    

    

    

    
 
  

    
      
          
            
  
vcf2vcf.py - manipulate vcf files


Purpose

Manipulate vcf-formatted files.



Usage

Type:

python vcf2vcf.py --help





for command line usage.


	
This script provides the following methods:

	




	
re-order

	reorder sample columns in vcf formatted file according to a given sort order






	
cgat.tools.vcf2vcf.Documentation()

	




	
-------------

	




	
This is a tool for manipulating vcf-formatted files.  The following

	




	
options are available:

	




	
+-----------+-------------------------+

	




	
+-----------+-------------------------+

	




	
lift-over

	




	
^^^^^^^^^

	




	
Command line options

	




	
--------------------

	





usage: vcf2vcf [-h] [--version] [--input-filename-fasta INPUT_FILENAME_FASTA]
               [--input-filename-bam INPUT_FILENAME_BAM]
               [--method {add-strelka-genotype,lift-over}]
               [--input-filename-chain INPUT_FILENAME_CHAIN]
               [--normal-sample-regex NORMAL_SAMPLE_REGEX]
               [--output-filename-unmapped OUTPUT_FILENAME_UNMAPPED]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN] [-F]
               [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
vcf2vcf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    vcfstats_sqlite.py - reformat output of vcf-stats for database loading
    

    

    

    
 
  

    
      
          
            
  
vcfstats_sqlite.py - reformat output of vcf-stats for database loading


	Tags

	Python






Purpose

create a csv separated file for loading into a database from
output of vcf-stats utility in vcf-tools package.



Usage

Example:

python vcfstats_sqlite.py [files] > [outfile]





Type:

python vcfstats_sqlite.py --help





for command line help.



Command line options



usage: vcfstats2db [-h] [--version] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
vcfstats2db: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_bam.py - compute coverage correlation between bam files
    

    

    

    
 
  

    
      
          
            
  
bam_vs_bam.py - compute coverage correlation between bam files


	Tags

	Genomics NGS BAM Comparison






Purpose

Compare per base coverage between two bam formatted files.



Usage

Example:

python bam_vs_bam.py in1.bam in2.bam





This command generates a tab delimited output with columns chromosome,
base coordinate, number of overlapping reads in in1.bam, and number of
overlapping reads in in2.bam.

Type:

python bam_vs_bam.py --help





for command line help.



Documentation

This tools allows users to compare the per base coverage between
two BAM files. The output includes all bases in the supplied reference
fasta except those with no coverage in the input BAMs.

At present the –interval or -i option has not been implemented.



Command line options


	--regex-identifier
	supply a regex to extract an identifier from the filenames.
defualts to using the filename







usage: bam-vs-bam [-h] [--version] [-i FILENAME_INTERVALS]
                  [-e REGEX_IDENTIFIER] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
bam-vs-bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_bed.py - count context that reads map to
    

    

    

    
 
  

    
      
          
            
  
bam_vs_bed.py - count context that reads map to


	Tags

	Genomics NGS Intervals BAM BED Counting






Purpose

This script takes as input a BAM file from an RNA-seq or
similar experiment and a bed formatted file. The bed
formatted file needs at least four columns. The fourth (name) column
is used to group counts.

The script counts the number of alignments overlapping in the first
input file that overlap each feature in the second file. Annotations
in the bed file can be overlapping - they are counted
independently.

Note that duplicate intervals will be counted multiple times. This
situation can easily arise when building a set of genomic annotations
based on a geneset with alternative transcripts. For example:

chr1     10000     20000     protein_coding            # gene1, transrcipt1
chr1     10000     20000     protein_coding            # gene1, transcript2





Any reads overlapping the interval chr1:10000-20000 will be counted
twice into the protein_coding bin by bedtools. To avoid this, remove any
duplicates from the bed file:

zcat input_with_duplicates.bed.gz | cgat bed2bed --merge-by-name | bgzip > input_without_duplicates.bed.gz





This scripts requires bedtools [http://bedtools.readthedocs.org/en/latest/] to be installed.



Options


	-a, –bam-file / -b, –bed-file
	These are the input files. They can also be provided as provided as
positional arguements, with the bam file being first and the (gziped
or uncompressed) bed file coming second






	-m, --min-overlap

	Using this option will only count reads if they overlap with a bed entry
by a certain minimum fraction of the read.





Example

Example:

python bam_vs_bed.py in.bam in.bed.gz







Usage

Type:

cgat bam_vs_bed BAM BED [OPTIONS]
cgat bam_vs_bed --bam-file=BAM --bed-file=BED [OPTIONS]





where BAM is either a bam or bed file and BED is a bed file.

Type:

cgat bam_vs_bed --help





for command line help.



Command line options



usage: bam-vs-bed [-h] [--version] [-m MIN_OVERLAP] [-a bam] [-b bed] [-s]
                  [--assume-sorted] [--split-intervals] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                  [-E STDERR] [-S STDOUT]
bam-vs-bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bam_vs_gtf.py - compare bam file against gene set
    

    

    

    
 
  

    
      
          
            
  
bam_vs_gtf.py - compare bam file against gene set


	Tags

	Genomics NGS Genesets BAM GTF Summary






Purpose

Compare RNASeq reads in a BAM file and compares it against reference exons to quantify exon overrun / underrun.



Documentation


	This script is for validation purposes:
	
	Exon overrun should be minimal - reads should not extend beyond known exons.


	Spliced reads should link known exons.






	Please note:
	
	For unspliced reads, any bases extending beyond exon boundaries are counted.


	
	For spliced reads, both parts of the reads are examined for their overlap.
	As a consequence, counts are doubled for spliced reads.







	The script requires a list of non-overlapping exons as input.


	For read counts to be correct the NH (number of hits) flag needs to be set correctly.










Usage

Example:

# Preview the BAM file using Samtools view
samtools view tests/bam_vs_gtf.py/small.bam | head
# Pipe input bam to script and specify gtf file as argument
cat tests/bam_vs_gtf.py/small.bam | cgat bam_vs_gtf.py --gtf-file=tests/bam_vs_gtf.py/hg19.chr19.gtf.gz











	category

	counts





	spliced_bothoverlap

	0



	unspliced_overlap

	0



	unspliced_nooverrun

	0



	unspliced

	207



	unspliced_nooverlap

	207



	spliced_overrun

	0



	spliced_halfoverlap

	0



	spliced_exact

	0



	spliced_inexact

	0



	unspliced_overrun

	0



	spliced

	18



	spliced_underrun

	0



	mapped

	225



	unmapped

	0



	input

	225



	spliced_nooverlap

	18



	spliced_ignored

	0






Type:

python bam_vs_gtf.py --help





for command line help.



Command line options

filename-exons / filename-gtf: a gtf formatted file containing the
genomic coordinates of a set of non-overlapping exons, such as from a
reference genome annotation database (Ensembl, UCSC etc.).



usage: bam-vs-gtf [-h] [--version] [-e gtf] [--timeit TIMEIT_FILE]
                  [--timeit-name TIMEIT_NAME] [--timeit-header]
                  [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                  [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bam-vs-gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    diff_bam.py - compare multiple bam files against each other
    

    

    

    
 
  

    
      
          
            
  
diff_bam.py - compare multiple bam files against each other


	Tags

	Genomics NGS BAM Comparison






Purpose

Compare reads in multiple BAM files against each other.


Note

BAM files need to be sorted by read name. samtools sort does NOT
work as it uses a custom comparison function (strnum_cmp) that is
incompatible with the standard lexicographical order in
python. See the example below on how to get sorted files.



This script is for validation purposes. It might take a while
for large BAM files.



Usage

If you have two sorted sam or bam formatted
files, type:

cgat diff_bam a.bam b.bam > out





If they are not sorted, you can use samtools sort to do an
inplace sort:

cgat diff_bam <(samtools view -h a.bam | hsort 0 -k1,1)
               <(samtools view -h b.bam | hsort 0 -k1,1)





The samtools -h option outputs the header, and the hsort command
sorts without disturbing the header.

An example output looks like this:












	read

	nlocations

	nmatched

	file1_nh

	file2_nh

	file1_loc

	file2_loc



	42YKVAAXX_HWI-EAS229_1:1:11:1659:174

	1

	2

	2

	2

	0,0

	0,0



	42YKVAAXX_HWI-EAS229_1:1:11:166:1768

	1

	2

	1

	1

	0

	0



	612UOAAXX_HWI-EAS229_1:1:97:147:1248

	2

	2

	2

	2

	0,1

	0,1






This reports for each read the number of locations that the read maps to
in all files, the number of files that have matches found for the read.
Then, for each file, it reports the number of matches and the locations
it maps to (coded as integers, 0 the first location, 1 the second, …).

In the example above, the first read maps twice to 1 location in both
files.  This is a read occuring twice in the input file. The second
read maps to the same one location in both files, while the third read
maps to the two same locations in both input files.

Type:

python diff_bam.py --help





for command line help.



Documentation

For read counts to be correct the NH flag to be set correctly.



Command line options



usage: diff-bam [-h] [--version] [--header-names HEADERS]
                [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
diff-bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2fasta.py - operate on sequences
    

    

    

    
 
  

    
      
          
            
  
fasta2fasta.py - operate on sequences


	Tags

	Sequences






Purpose

perform operations (masking, renaming) on a stream of fasta formatted sequences.

Available edit operations are:


	translate
	translate sequences using the standard genetic code.



	translate-to-stop
	translate until first stop codon



	truncate-at-stop
	truncate sequence at first stop codon



	back-translate
	convert nucleotide sequence to peptide sequence
Requires parameter of second fasta file with peptide sequences.



	mark-codons
	adds a space after each codon



	apply-map
	rename sequence identifiers from a given map Requires parameter
with filename of a map. The map is a tab-separated file mapping old
to new names.



	build-map
	rename sequence identifiers numerically and save output in a
tab-separated file.  Requires parameter with filename of a map. The
map is a tab-separated file mapping new to old names and will be
newly created. Any exiting file of the same name will be
overwritten.



	pseudo-codons
	translate, but keep register with codons



	interleaved-codons
	mix amino acids and codons



	filter
	remove sequence according to certain criteria. For example,
–method=filter –filter-method=min-length=5  –filter-method=max-length=10





map-codons:


	remove-gaps
	remove all gaps in the sequence



	mask-stops
	mask all stop codons



	mask-seg
	mask sequence by running seg



	mask-bias
	mask sequence by running bias



	mask-codons
	mask codon sequence given a masked amino acid sequence.
Requires parameter with masked amino acids in fasta format.



	mask-incomplete-codons
	mask codons that are partially masked or gapped



	mask-soft
	combine hard-masked (NNN) sequences with unmasked sequences to generate
soft masked sequence (masked regions in lower case)



	remove-stops
	remove stop codons



	upper
	convert sequence to upper case



	lower
	convert sequence to lower case



	reverse-complement
	build the reverse complement



	shuffle
	shuffle each sequence



	sample
	select a certain proportion of sequences





Parameters are given to the option parameters in a comma-separated
list in the order that the edit operations are called upon.

Exclusion/inclusion is tested before applying any id mapping.



Usage

Example:

python fasta2fasta.py --method=translate < in.fasta > out.fasta





Type:

python fasta2fasta.py --help





for command line help.



Command line options



usage: fasta2fasta [-h] [--version]
                   [-m {translate,translate-to-stop,truncate-at-stop,back-translate,mark-codons,apply-map,build-map,pseudo-codons,filter,interleaved-codons,map-codons,remove-gaps,mask-seg,mask-bias,mask-codons,mask-incomplete-codons,mask-stops,mask-soft,map-identifier,nop,remove-stops,upper,lower,reverse-complement,sample,shuffle}]
                   [-p PARAMETERS] [-x]
                   [--sample-proportion SAMPLE_PROPORTION]
                   [--exclude-pattern EXCLUDE_PATTERN]
                   [--include-pattern INCLUDE_PATTERN]
                   [--filter-method FILTER_METHODS] [-t {aa,na}]
                   [-l TEMPLATE_IDENTIFIER] [--map-tsv-file MAP_TSV_FILE]
                   [--fold-width FOLD_WIDTH] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
fasta2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fasta2kmercontent.py
    

    

    

    
 
  

    
      
          
            
  
fasta2kmercontent.py


	Tags

	Genomics Sequences FASTA Summary






Purpose

This script takes an input fasta file from stdin and computes a
k-nucleotide content for each contig in the file. The output is a
tab-delimited file of kmer counts:

     contig1  contig2  contig3  contig4
n1
n2
n3





where n is the kmer and contig is the fasta entry.

The user specifies the kmer length that is to be searched. Note that the longer
the kmer, the longer the script will take to run.

Note the order of output will not necessarily be the same order as the input.



Usage

Example:

zcat in.fasta.gz | head::

 >NODE_1_length_120_cov_4.233333
 TCACGAGCACCGCTATTATCAGCAACTTTTAAGCGACTTTCTTGTTGAATCATTTCAATT
 GTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCTACAAGACGGAAG
 CGTTTTGTAGCTGAAAGTGGGCGAGTTTCCATGATACGAAcgatATCGCC

 >NODE_3_length_51_cov_33.000000
 CGAGTTTCCATGATACGAAcgatATCGCCTTCTTTAGCAACGTTGTTTTCGTCATGTGCT
 TTATATTTTTTAGAATAGTTGATACGTTTACCATAGACTGG

zcat in.fasta.gz | python fasta2kmercontent.py
                   --kmer-size 4
                   > tetranucleotide_counts.tsv

head tetranucleotide_counts.tsv::

  kmer NODE_228_length_74_cov_506.432434 NODE_167_length_57_cov_138.438599
  GTAC 0                                 0
  TGCT 0                                 0
  GTAA 2                                 0
  CGAA 1                                 1
  AAAT 1                                 0
  CGAC 0                                 0





In this example, for each contig in in.fasta.gz the occurrence of each four
nucleotide combination is counted.

Alternative example:

zcat in.fasta.gz | python fasta2kmercontent.py
                   --kmer-size 4
                   --output-proportion
                   > tetranucleotide_proportions.tsv





In this example, for each contig in in.fasta.gz we return the proportion of
each four base combination out of the total tetranucleotide occurences.
--output-proportion overides the count output.



Options

Two options control the behaviour of fasta2kmercontent.py; --kmer-size and
--output-proportion.


	--kmer-size::
	The kmer length to count over in the input fasta file



	--output-proportion::
	The output values are proportions rather than absolute counts





Type:

python fasta2composition.py --help





for command line help.



Command line options



usage: fasta2kmercontent [-h] [--version] [-k KMER] [-p]
                         [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                         [--timeit-header] [--random-seed RANDOM_SEED]
                         [-v LOGLEVEL]
                         [--log-config-filename LOG_CONFIG_FILENAME]
                         [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                         [-E STDERR] [-S STDOUT]
fasta2kmercontent: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastas2fasta.py - concatenate sequences from multiple fasta files
    

    

    

    
 
  

    
      
          
            
  
fastas2fasta.py - concatenate sequences from multiple fasta files


	Tags

	Genomics Sequences MultipleAlignments FASTA Manipulation






Purpose

This script reads sequences from two or more fasta formatted
files and outputs a new file with the sequences concatenated per
entry.

All files must have the same number of sequences and the id of
the first file is output.



Usage

Example:

python fastas2fasta.py a.fasta b.fasta > c.fasta





If a.fasta is:

>1
AAACC
>2
CCCAA





and b.fasta is:

>a
GGGGTTT
>b
TTTTGGG





then the output will be:

>1
AAACCGGGGTTT
>2
CCCAATTTTGGG





Type:

python fastas2fasta.py --help





for command line help.



Command line options



usage: fastas2fasta [-h] [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastas2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fasta.py - interleave two fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fasta.py - interleave two fastq files


	Tags

	Genomics NGS FASTQ FASTA Conversion






Purpose

This script is used to interleave two fastq-formatted files
(paired data) into a single fasta-formatted file. Read1 is
followed by read2 in the resultant file.

fastq files MUST be sorted by read identifier.



Usage

For example:

cgat fastqs2fasta          --first-fastq-file=in.fastq.1.gz          --second-fastq-file=in.fastq.2.gz > out.fasta





If in.fastq.1.gz looks like this:

@r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/1
TTCTTGTTGAATCATTTCAATTGTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCT
+
??A???ABBDDBDDEDGGFGAFHHCHHIIIDIHGIFIH=HFICIHDHIHIFIFIIIIIIHFHIFHIHHHH
@r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/1
ATGAACGCGGCCGAGCAACACCGCCACCACGTGAATCGGTGGTTCTACGACTGCCCGTCGGCCTTCCACC
+





and in.fastq.2.gz looks like this:

A??A?B??BDBDDDBDGGFA>CFCFIIIIIIF;HFIGHCIGHIHHEHHHIIHHFDHH-HD-IDHHHGIHG
@r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/2
ACCTTCGTTTCCAAGGTGCAGCAGGTCAACTTGATCAAACTGCCCCTTTGAACGAAGTGAAAAAACAAAT
+
A????@BBDBDDADABGFGFFEHHHIEHHII@IIHIHHIDHCCIHIIIHHIEI5HIHFHIEHIH=CHHC)
@r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/2
GGGAGCCTGCAGCGCCGCCGCGACTGCATCGCCGCGGCCGGCATCGTGGGATGGACGGTGCGTCAGACGC
+
???A?9BBDDD5@DDDGFFGFFHIIIHHIHBFHIIHIIHHH>HEIHHFI>FFHGIIHHHDHCCFIHFIHD





then the output will be:

>r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/1
TTCTTGTTGAATCATTTCAATTGTCTCCTTTTAGTTTTATTAGATAATAACAGCTTCTTCCACAACTTCT
>r1_from_gi|387760314|ref|NC_017594.1|_Streptococcus_saliva_#0/2
ACCTTCGTTTCCAAGGTGCAGCAGGTCAACTTGATCAAACTGCCCCTTTGAACGAAGTGAAAAAACAAAT
>r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/1
ATGAACGCGGCCGAGCAACACCGCCACCACGTGAATCGGTGGTTCTACGACTGCCCGTCGGCCTTCCACC
>r3_from_gi|315441696|ref|NC_014814.1|_Mycobacterium_gilvum_#0/2
GGGAGCCTGCAGCGCCGCCGCGACTGCATCGCCGCGGCCGGCATCGTGGGATGGACGGTGCGTCAGACGC
>r4_from_gi|53711291|ref|NC_006347.1|_Bacteroides_fragilis_#0/1
GAGGGATCAGCCTGTTATCCCCGGAGTACCTTTTATCCTTTGAGcgatGTCCCTTCCATACGGAAACACC
>r4_from_gi|53711291|ref|NC_006347.1|_Bacteroides_fragilis_#0/2
CAACCGTGAGCTCAGTGAAATTGTAGTATCGGTGAAGATGCcgatTACCCGcgatGGGACGAAAAGACCC
>r5_from_gi|325297172|ref|NC_015164.1|_Bacteroides_salanitr_#0/1
TGCGGCGAAATACCAGCCCATGCCCCGTCCCCAGAATTCCTTGGAGCAGCCTTTGTGAGGTTCGGCTTTG
>r5_from_gi|325297172|ref|NC_015164.1|_Bacteroides_salanitr_#0/2
AACGGCACGCACAATGCCGACCGCTACAAAAAGGCTGCCGACTGGCTCCGCAATTACCTGGTGAACGACT





Type:

cgat fastqs2fasta --help





for command line help.



Command line options



usage: fastqs2fasta [-h] [--version] [-a FASTQ1] [-b FASTQ2]
                    [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                    [--timeit-header] [--random-seed RANDOM_SEED]
                    [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastqs2fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fastqs.py - manipulate (merge/reconcile) fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fastqs.py - manipulate (merge/reconcile) fastq files


	Tags

	Genomics NGS FASTQ FASTQ Manipulation






Purpose

This script manipulates multiple fastq files and outputs
new fastq files. Currently only the method reconcile
is implemented.


reconcile

Reconcile reads from a pair of fastq files.

This method takes two fastq files and outputs two fastq files such
that all reads in the output are present in both output files.

The typical use case is that two fastq files containing the first and
second part of a read pair have been independently filtered, for
example by quality scores, truncation, etc. As a consequence some
reads might be missing from one file but not the other. The reconcile
method will output two files containing only reads that are common to
both files.

The two files must be sorted by read identifier.

Example input, read2 and read3 are only present in either of the
files:


# File1        # File 2

@read1         @read1
AAA            AAA
+              +
!!!            !!!
@read2         @read3
CCC            TTT
+              +
!!!            !!!
@read4         @read4
GGG            GGG
+              +
!!!            !!!




Example output, only the reads common to both files are output:

# File1        # File 2

@read1         @read1
AAA            AAA
+              +
!!!            !!!
@read4         @read4
GGG            GGG
+              +
!!!            !!!








Usage

Example:

python fastqs2fastqs.py             --method=reconcile             --output-filename-pattern=myReads_reconciled.%s.fastq             myReads.1.fastq.gz myReads.2.fastq.gz





In this example we take a pair of fastq files, reconcile by read
identifier and output 2 new fastq files named
myReads_reconciled.1.fastq.gz and
myReads_reconciled.2.fastq.gz.

Type:

python fastqs2fastqs.py --help





for command line help.



Command line options



usage: fastqs2fastqs [-h] [--version] [-m {reconcile,filter-by-sequence}] [-c]
                     [-u] [--id-pattern-1 ID_PATTERN_1]
                     [--id-pattern-2 ID_PATTERN_2]
                     [--input-filename-fasta INPUT_FILENAME_FASTA]
                     [--filtering-kmer-size FILTERING_KMER_SIZE]
                     [--filtering-min-kmer-matches FILTERING_MIN_KMER_MATCHES]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?]
                     [-P OUTPUT_FILENAME_PATTERN] [-F] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
fastqs2fastqs: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtf2tsv.py - convert gtf file to a tab-separated table
    

    

    

    
 
  

    
      
          
            
  
gtf2tsv.py - convert gtf file to a tab-separated table


	Tags

	Genomics Genesets






Purpose

convert a gtf formatted file to tab-separated table. The difference to
a plain gtf formatted file is that column headers are added,
which can be useful when importing the gene models into a database.

Note that coordinates are converted to 0-based open/closed notation (all on
the forward strand).

By default, the gene_id and transcript_id are extracted from the
attributes field into separated columns.  If
-f/--attributes-as-columns is set, all fields in the attributes
will be split into separate columns.

The script also implements the reverse operation, converting a tab-separated
table into a gtf formatted file.

When using the -m, --map option, the script will output a table
mapping gene identifiers to transcripts or peptides.

USING GFF3 FILE:
The script also can convert gff3 formatted files to tsv files when
specifiying the option –is-gff3 and –attributes-as-columns. Currently only
the full GFF3 to task is implimented. Further improvements to this script can
be made to only output the attributes only, i.e. –output-only-attributes.



Usage

Example:

cgat gtf2tsv < in.gtf




















	contig

	source

	feature

	start

	end

	score

	strand

	frame

	gene_id

	transcript_id

	attributes



	chr19

	processed_transcript

	exon

	66345

	66509

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “1”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00001701708”



	chr19

	processed_transcript

	exon

	60520

	60747

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “2”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00002735807”



	chr19

	processed_transcript

	exon

	60104

	60162

	.

	
	




	.

	ENSG00000225373

	ENST00000592209

	exon_number “3”; gene_name “AC008993.5”; gene_biotype “pseudogene”; transcript_name “AC008993.5-002”; exon_id “ENSE00002846866”






To build a map between gene and transcrip identiers, type:

cgat gtf2tsv --output-map=transcript2gene < in.gtf











	transcript_id

	gene_id



	ENST00000269812

	ENSG00000141934



	ENST00000318050

	ENSG00000176695



	ENST00000327790

	ENSG00000141934






To run the script to convert a gff3 formatted file to tsv, type:

cat file.gff3.gz | cgat gtf3tsv --is-gff3 --attributes-as-columns
> outfile.tsv





Type:

cgat gtf2tsv --help





for command line help.



Command line options



usage: gtf2tsv [-h] [--version] [-o] [-f] [--is-gff3] [-i]
               [-m {transcript2gene,peptide2gene,peptide2transcript}]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
gtf2tsv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gtfs2tsv.py - compare two genesets
    

    

    

    
 
  

    
      
          
            
  
gtfs2tsv.py - compare two genesets


	Tags

	Python






Purpose

This script compares two genesets (required) in gtf-formatted
files and output lists of shared and unique genes.

It outputs the results of the comparison into various sections. The
sections are split into separate output files whose names are
determined by the --output-filename-pattern option. The sections
are:


	genes_ovl
	Table with overlapping genes



	genes_total
	Summary statistic of overlapping genes



	genes_uniq1
	List of genes unique in set 1



	genes_uniq2
	List of genes unique in set 2







Options


	--output-filename-pattern
	This option defines how the output filenames are determined for the
sections described in the Purpose section above.







Usage

Example:

head a.gtf::

  19 processed_transcript exon 66346 66509 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "1"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00001701708";

  19 processed_transcript exon 60521 60747 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "2"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002735807";

  19 processed_transcript exon 60105 60162 . - . gene_id "ENSG00000225373";
  transcript_id "ENST00000592209"; exon_number "3"; gene_name "AC008993.5";
  gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002846866";

head b.gtf::

  19 transcribed_processed_pseudogene exon 66320 66492 . - .
  gene_id "ENSG00000225373"; transcript_id "ENST00000587045"; exon_number "1";
  gene_name "AC008993.5"; gene_biotype "pseudogene";
  transcript_name "AC008993.5-001"; exon_id "ENSE00002739353";

  19 lincRNA exon 68403 69146 . + . gene_id "ENSG00000267111";
  transcript_id "ENST00000589495"; exon_number "1"; gene_name "AC008993.2";
  gene_biotype "lincRNA"; transcript_name "AC008993.2-001";
  exon_id "ENSE00002777656";

  19 lincRNA exon 71161 71646 . + . gene_id "ENSG00000267588";
  transcript_id "ENST00000590978"; exon_number "1"; gene_name "MIR1302-2";
  gene_biotype "lincRNA"; transcript_name "MIR1302-2-001";
  exon_id "ENSE00002870487";

python gtfs2tsv.py a.gtf b.gtf > out.tsv

head out.tsv::

  contigs source feature start end score strand frame gene_id transcript_id attributes
  19 processed_transcript exon 66345 66509 . - . ENSG00000225373 ENST00000592209 exon_number "1";
  gene_name "AC008993.5"; gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00001701708"
  19 processed_transcript exon 60520 60747 . - . ENSG00000225373 ENST00000592209 exon_number "2";
  gene_name "AC008993.5"; gene_biotype "pseudogene"; transcript_name "AC008993.5-002";
  exon_id "ENSE00002735807"





Type:

python gtfs2tsv.py --help





for command line help.



Command line options



usage: gtfs2tsv [-h] [--version] [-e] [-f] [-p] [-s] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
gtfs2tsv: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates
    

    

    

    
 
  

    
      
          
            
  
rnaseq_junction_bams2bam.py - convert mappings against junctions to genomic coordinates


	Tags

	Genomics NGS Genesets






Purpose

This script takes as input a BAM file resulting from reads mapped against
a junction database and outputs a bam formatted file in genomic
coordinates.

The contigs should be of the format
<chromosome>|<start>|<exon-end>-<exon-start>|<end>|<splice>|<strand>.

<start> - 0-based coordinate of first base
<exon-end> - 0-based coordinate of last base in exon
<exon-start> - 0-based coordinate of first base in exon
<end> - 0-based coordinate of base after last base

Strand can be either fwd or rev, though sequences in the database
and coordinates are all on the forward strand.

For example chr1|1244933|1244982-1245060|1245110|GTAG|fwd translates to the
intron chr1:1244983-1245060 in python coordinates.

The input bam-file is supposed to be sorted by read. Only the best
matches are output for each read, were best is defined both in terms
of number of mismatches and number of colour mismatches.



Usage

Example:

cat input.bam | python rnaseq_junction_bam2bam.py - --log=log > output.bam





Type:

python rnaseq_junction_bam2bam.py --help





for command line help.



Command line options



usage: rnaseq-junction-bam2bam [-h] [--version] [-t FILENAME_GENOME_BAM]
                               [-s FILENAME_CONTIGS] [-o] [-i]
                               [-c REMOVE_CONTIGS] [-f] [-u]
                               [--timeit TIMEIT_FILE]
                               [--timeit-name TIMEIT_NAME] [--timeit-header]
                               [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                               [--log-config-filename LOG_CONFIG_FILENAME]
                               [--tracing {function}] [-? ?] [-I STDIN]
                               [-L STDLOG] [-E STDERR] [-S STDOUT]
rnaseq-junction-bam2bam: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    split_gff - split a gff file into chunks
    

    

    

    
 
  

    
      
          
            
  
split_gff - split a gff file into chunks


	Tags

	Genomics Intervals Genesets GFF Manipulation






Purpose

Split gff file into chunks. Overlapping entries will always be output
in the same chunk. Input is read from stdin unless otherwise
specified. The input needs to be contig/start position sorted.



Options

-i –min-chunk-size


This option specifies how big each chunck should
be, in terms of the number of gff lines to be
included. Because overlapping lines are always
output to the same file, this should be considered
a minimum size.





	-n, --dry-run

	This options tells the script not to actaully write
any files, but it will output a list of the files
that would be output.





Example

cgat splitgff -i 1 < in.gff

where in.gff looks like:


chr1        .       exon    1       10      .       +       .
chr1        .       exon    8       100     .       +       .
chr1        .       exon    102     150     .       +       .




will produce two files that look like:


000001.chunk:
chr1        .       exon    1       10      .       +       .
chr1        .       exon    8       100     .       +       .

000002.chunk:
chr1        .       exon    102     150     .       +       .






Usage


cgat splitgff [OPTIONS]




Will read a gff file from stdin and split into multiple gff files.


cgat split_gff -I GFF [OPTIONS]




Will read the gff file GFF and split into multiple gff files.



Command line options



usage: split-gff [-h] [-i MIN_CHUNK_SIZE] [-n]
                 [--output-filename-name OUTPUT_FILENAME_NAME]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                 [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
split-gff: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    bams2bam.py - merge genomic and transcriptome mapped bamfiles
    

    

    

    
 
  

    
      
          
            
  
bams2bam.py - merge genomic and transcriptome mapped bamfiles


	Tags

	Genomics NGS Geneset BAM Manipulation






Purpose

This script takes as input two BAM files from an RNASeq experiment.
The first bam file (bamG) should contain reads mapped against
the genome using a mapper permitting splicing (e.g. tophat). The
second bam file (bamT) should contain reads mapped against
known transcripts. This script will write a new bam file that removes
reads from bamG that map to regions that are conflicting with
those in bamT.


Note

Note that if junctions are supplied, the resultant bam files will not
be sorted by position.




	bamG
	bam formatted file with reads mapped against the genome



	bamT
	bam formatted file with reads mapped against transcripts







Usage

Example:

python bams2bam.py bamT.bam bamG.bam





Type:

python bams2bam.py --help





for command line help.



Documentation

The script needs to look-up reads via their names. It thus builds an
index of reads mapping

This script requires the NM attributes to be set. If it is not set,
you will need to set a policy.



Command line options



Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 132, in main
    module.main(sys.argv)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/bams2bam.py", line 79, in main
    usage=globals()["__doc__"])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgatcore/experiment.py", line 510, in __init__
    **kwargs)
TypeError: __init__() got an unexpected keyword argument 'version'







            

          

      

      

    

  

  
    
    

    bed.plot.py - create genomic snapshots using the IGV Viewer
    

    

    

    
 
  

    
      
          
            
  
bed.plot.py - create genomic snapshots using the IGV Viewer


	Tags

	Python






Purpose

Create genomic plots in a set of intervals using
the IGV snapshot mechanism.

The script can use a running instance of IGV identified
by host and port. Alternatively, it can start IGV and load
a pre-built session.



Usage

Example:

python bed2plot.py < in.bed





Type:

python script_template.py --help





for command line help.



Command line options



usage: bed2plot [-h] [-s SESSION] [-d SNAPSHOTDIR] [-f {png,eps,svg}]
                [-o HOST] [-p PORT] [-e EXTEND] [-x EXPAND] [--session-only]
                [-n {bed-name,increment}] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-P OUTPUT_FILENAME_PATTERN]
                [-F] [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
bed2plot: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat2dot.py - create a graph between cgat scripts
    

    

    

    
 
  

    
      
          
            
  
cgat2dot.py - create a graph between cgat scripts


	Tags

	Python






Purpose

This script creates an rdf description of a cgat script.

Optionally, the script outputs also a galaxy xml description of the
scripts’ interface.



Usage

Example:

python cgat2dot.py scripts/*.py





Type:

python cgat2dot.py --help





for command line help.



Documentation



Command line options



usage: cgat2dot [-h] [-f {rdf,galaxy}] [-l FILENAME_LIST] [-s SRC_DIR]
                [-r INPUT_REGEX] [-p OUTPUT_PATTERN] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
cgat2dot: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_get_options.py - build a sorted list of all options used in scripts
    

    

    

    
 
  

    
      
          
            
  
cgat_get_options.py - build a sorted list of all options used in scripts


	Author

	


	Tags

	Python






Purpose

Go through all scripts in the cgat code collection and collect
options used in the scripts.

This script expects to be executed at the root of the
cgat code repository.



Usage

Example:

python cgat_get_options.py





Type:

python cgat_get_options.py --help





for command line help.



Command line options



usage: cgat-get-options [-h] [--inplace] [--options-tsv-file TSV_FILE]
                        [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                        [--timeit-header] [--random-seed RANDOM_SEED]
                        [-v LOGLEVEL]
                        [--log-config-filename LOG_CONFIG_FILENAME]
                        [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                        [-E STDERR] [-S STDOUT]
cgat-get-options: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code
    

    

    

    
 
  

    
      
          
            
  
cgat_pep8_check_code_quality.py - check PEP8 conformance of cgat Code


	Author

	


	Tags

	Python






Purpose

This script runs pep8.py on the cgat code collection and outputs
summary statistics of code quality onto stdout.



Usage

To use, simply run the script from the root directory of the
cgat code collection:

python cgat_pep8_check_code_quality.py





Type:

python cgat_pep8_check_code_quality.py --help





for command line help.



Command line options



usage: cgat-pep8-code-quality [-h] [--timeit TIMEIT_FILE]
                              [--timeit-name TIMEIT_NAME] [--timeit-header]
                              [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                              [--log-config-filename LOG_CONFIG_FILENAME]
                              [--tracing {function}] [-? ?] [-I STDIN]
                              [-L STDLOG] [-E STDERR] [-S STDOUT]
cgat-pep8-code-quality: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    csv_select.py - select rows from a table
    

    

    

    
 
  

    
      
          
            
  
csv_select.py - select rows from a table


	Tags

	Python






Purpose

extract rows from a csv-formatted table.

The select statement is a one-line, for example:

csv_select.py "int(r['mC-foetal-sal-R4']) > 0" < in > out





Note the required variable name r for denoting field names. Please
also be aware than numeric values need to be converted first before
testing.



Usage

Type:

python csv_select.py --help





for command line help.



Command line options



usage: csv-select [-h] [-r] [-u] [-l] [-f FILENAME_FIELDS]
                  [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                  [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                  [--log-config-filename LOG_CONFIG_FILENAME]
                  [--tracing {function}] [-? ?] [--csv-dialect CSV_DIALECT]
                  [-I STDIN] [-L STDLOG] [-E STDERR] [-S STDOUT]
csv-select: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastq2summary.py - compute summary stats for a fastq file
    

    

    

    
 
  

    
      
          
            
  
fastq2summary.py - compute summary stats for a fastq file


	Tags

	Genomics NGS Sequences FASTQ Annotation






Purpose

This script iterates over a fastq file and outputs
summary statistics for the complete file

The output is a tab-delimited text file with the some of following columns
depending on the option specified:







	Column

	Content



	reads

	total reads in file



	bases

	total bases in file



	mean_length

	mean read length



	median_length

	median read length



	mean_quality

	mean read quality



	median_quality

	median read quality



	nfailed

	number of bases below quality threshold








Usage

Example:

python fastq2summary.py --guess-format=sanger < in.fastq > out.tsv





In this example we know that our data have quality scores formatted as
sanger. Given that illumina-1.8 quality scores are highly overlapping
with sanger, this option defaults to sanger qualities. In default mode
the script may not be able to distinguish highly overlapping sets of
quality scores.

Type:

python fastq2summary.py --help





for command line help.



Command line options



usage: fastq2summary [-h]
                     [--guess-format {sanger,solexa,phred64,illumina-1.8,integer}]
                     [-f {sanger,solexa,phred64,illumina-1.8,integer}]
                     [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                     [--timeit-header] [--random-seed RANDOM_SEED]
                     [-v LOGLEVEL] [--log-config-filename LOG_CONFIG_FILENAME]
                     [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                     [-E STDERR] [-S STDOUT]
fastq2summary: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    fastqs2fastq.py - merge reads in fastq files
    

    

    

    
 
  

    
      
          
            
  
fastqs2fastq.py - merge reads in fastq files


	Tags

	Genomics NGS FASTQ FASTQ Manipulation






Purpose

This script takes two paired-ended fastq files and outputs a single
fastq file in which reads have merged.

The two files must be sorted by read identifier.

Note that this script is currently a proof-of-principle implementation
and has not been optimized for speed or functionality.



Usage

Example:

python fastqs2fastq.py myReads.1.fastq.gz myReads.2.fastq.gz
       --method=join
       > join.fastq





In this example we take a pair of fastq files, join the reads and save
the output in join.fastq.

Type:

python fastqs2fastq.py --help





for command line help.



Command line options



usage: fastqs2fastq [-h] [-m {join}] [--timeit TIMEIT_FILE]
                    [--timeit-name TIMEIT_NAME] [--timeit-header]
                    [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                    [--log-config-filename LOG_CONFIG_FILENAME]
                    [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                    [-E STDERR] [-S STDOUT]
fastqs2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    gff32gtf.py - various methods for converting gff3 files to gtf
    

    

    

    
 
  

    
      
          
            
  
gff32gtf.py - various methods for converting gff3 files to gtf


	Tags

	Python






Purpose

Provide a range of methods for converting GFF3 formated files to valid GTF
format files.



Background

While the various flavours of GFF format are supposedly backward
compatible, this is broken by GTF2.2 and GFF3. GTF requires the
presence of gene_id and transcript_id fields for each record. This not
so for GFF3. Further key,value tags in the attributes fields of GTF
are ” ” delimited, but are “=” delimited in GFF.

Conversion is non-trivial. GFF3 records are hierachical. To find the
gene_id and transcript_id one must traverse the hierarchy to the
correct point. Futher records can have multiple parents.


-> Exon





	While the standard structure is Gene -> mRNA -|       ,
	-> CDS





this is not manditory, and it is possible the conversion will want to
be done in a different way.



Usage

Example:

python gff32gtf.py --method=[METHOD] [options]





Their are several ways in which the conversion can be done:


hierachical

By default this script will read in the entire GFF3 file, and then for
each entry traverse the hierarchy until an object of type GENE_TYPE
(“gene” by default”) or an object with no parent is found. This
becomes the “gene_id”. Any object of TRANSCRIPT_TYPE encountered on
the way is set as the transcript_id. If not such object is encountered
then the object directly below the gene object is used as the
trancript_id. Objects that belong to multipe transcripts or genes are
duplicated.

This method requires ID and Parent fields to be present.

Because this method reads the whole file in, it uses the most memory, although
see –read-twice and –by-chrom for tricks that might help.



set-field

The gene_id and transcript_id fields are set to the  value of a provided field.
Records that don’t have these fields are discarded. By default:

transcript_id=ID
gene_id=Parent



set-pattern

As above, but the fieldnames are set by a string format involving the
fields of the record.



set-none

transcript_id and gene_id are set to None.




Command line options



usage: gff32gtf [-h] [-m {hierarchy,set-field,set-pattern,set-none}]
                [-g GENE_TYPE] [-t TRANSCRIPT_TYPE] [-d]
                [--gene-id GENE_FIELD_OR_PATTERN]
                [--transcript-id TRANSCRIPT_FIELD_OR_PATTERN]
                [--parent-field PARENT] [--read-twice] [--by-chrom]
                [--fail-missing-gene] [--timeit TIMEIT_FILE]
                [--timeit-name TIMEIT_NAME] [--timeit-header]
                [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                [--log-config-filename LOG_CONFIG_FILENAME]
                [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                [-E STDERR] [-S STDOUT]
gff32gtf: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    script_template.py
    

    

    

    
 
  

    
      
          
            
  
script_template.py


	Tags

	Python






Purpose

Convert the output of a metaphlan analysis to a preferred table format



Usage

Example:

python metaphlan2table.py --help





Type:

python metaphlan2table.py --help





for command line help.



Documentation



Code



usage: metaphlan2table [-h] [--version] [-t {read_map,rel_ab}]
                       [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                       [--timeit-header] [--random-seed RANDOM_SEED]
                       [-v LOGLEVEL]
                       [--log-config-filename LOG_CONFIG_FILENAME]
                       [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                       [-E STDERR] [-S STDOUT]
metaphlan2table: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    split_fasta.py
    

    

    

    
 
  

    
      
          
            
  
split_fasta.py


	Tags

	Python






Purpose


Todo

describe purpose of the script.





Usage

Example:

python split_fasta.py --help





Type:

python split_fasta.py --help





for command line help.



Command line options



usage: split-fasta [-h] [--version] [-f INPUT_FILENAME] [-i INPUT_PATTERN]
                   [-o OUTPUT_PATTERN] [-n NUM_SEQUENCES] [-m MAP_FILENAME]
                   [-s] [--min-size MIN_SIZE] [--timeit TIMEIT_FILE]
                   [--timeit-name TIMEIT_NAME] [--timeit-header]
                   [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                   [--log-config-filename LOG_CONFIG_FILENAME]
                   [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                   [-E STDERR] [-S STDOUT]
split-fasta: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    transfac2transfac.py - filter transfac motif files
    

    

    

    
 
  

    
      
          
            
  
transfac2transfac.py - filter transfac motif files


	Tags

	Python






Purpose

Filter a transfac motif file.



Usage

Example:

python cgat_script_template.py





Type:

python cgat_script_template.py --help





for command line help.



Command line options



usage: transfac2transfac [-h] [-f FILTER_PREFIX] [-p FILTER_PATTERN]
                         [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                         [--timeit-header] [--random-seed RANDOM_SEED]
                         [-v LOGLEVEL]
                         [--log-config-filename LOG_CONFIG_FILENAME]
                         [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                         [-E STDERR] [-S STDOUT]
transfac2transfac: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    wig2bed.py - convert densities to intervals
    

    

    

    
 
  

    
      
          
            
  
wig2bed.py - convert densities to intervals


Purpose

define intervals based on densities within a bigwig file.

The script currently implements the following methods (--method):


	threshold
	output windows that contain values above a certain
threshold.



	std-above-mean
	output windows that are a certain number of standard
deviations above the mean.



	multiple-of-mean
	output windows that are a certain times above the mean.







Usage

Bigwig files need to be supplied by the –bigwig-file options.

For example:

python wig2bed.py --threshold=10 --method=threshold --genome-file=mm10 --bigwig-file=in.bw > out.bed







Command line options



usage: wig2bed [-h] [-m {threshold,stddev-above-mean,multiple-of-mean}]
               [-g GENOME_FILE] [-t THRESHOLD] [-i bigwig]
               [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
               [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
               [--log-config-filename LOG_CONFIG_FILENAME]
               [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
               [-E STDERR] [-S STDOUT]
wig2bed: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    Modules
    

    

    

    
 
  

    
      
          
            
  
Modules

This section documents the modules used in CGAT scripts.


CGAT generic toolboxes

These are the modules that every script or module should use.






Genomics


File formats

Modules for parsing and working for data in specific formats.



	AGP.py - working with AGP files

	Bed.py - Tools for working with bed files

	Blat.py - tools for working with PSL formatted files and data

	CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

	FastaIterator.py - Iteration over fasta files

	Fastq.py - methods for dealing with fastq files

	GFF3 - Classes, functions and iterators for working with GFF3 files

	GTF.py - Classes and methods for dealing with GTF/GFF formatted files

	IndexedFasta.py - fast random access in fasta files

	IndexedGenome.py - Random access to interval lists

	Sra.py - Methods for dealing with short read archive files

	VCF.py - Tools for working with VCF files







Algorithms



	AString.py - strings as arrays of characters

	Genomics.py - Tools for working with genomic data

	Intervals.py - Utility functions for working with intervals

	Motifs.py -

	SequencePairProperties.py - Computing metrics for aligned sequences

	SequenceProperties.py - Computing metrics of nucleotide sequences

	Variants.py -







Wrappers

These modules wrap tools and provide routines for parsing their
output.



	WrapperCodeML.py -

	IGV.py - Simple wrapper to the IGV socket interface

	Masker.py - Wrapper for sequence masking tools








Data processing


Math and Stats



	Histogram.py - Various functions to deal with histograms

	Histogram2D.py - functions for handling two-dimensional histograms.

	Stats.py - statistical utility functions

	MatrixTools.py -







Toolboxes

Toolboxes for generic problems.



	Iterators.py - Iterator functions

	SetTools.py - Tools for working on sets

	Tree.py - A phylogenetic tree

	TreeTools.py - Tools for working with trees








CGAT infrastructure

Below is a list of modules that are involved in maintainig the
CGAT infrastructure such as logging, dependency tracking, etc.





Other



	RLE.py - a simple run length encoder

	SVGdraw.py - generate SVG drawings

	RateEstimation.py - utilities for computing rate estimates for codon models.







Unsorted

Modules not sorted into categories.









            

          

      

      

    

  

  
    
    

    AGP.py - working with AGP files
    

    

    

    
 
  

    
      
          
            
  
AGP.py - working with AGP files

This module contains a parser for reading from agp formatted
files.


Code


	
class AGP.AGP

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Parser for AGP formatted files.


	
readFromFile(infile)

	read an agp file.

Example line:

scaffold_1      1       1199    1       W       contig_13       1       1199    +





This method converts coordinates to zero-based coordinates
using open/closed notation.

In AGP nomenclature
(http://www.ncbi.nlm.nih.gov/genome/guide/Assembly/AGP_Specification.html)
objects (obj) like scaffolds are assembled from components
(com) like contigs.

Component types are:


	W
	WGS sequence



	N
	gap of specified length.










	
mapLocation(id, start, end)

	map a genomic location.


	Raises

	KeyError – If id is not present.

















            

          

      

      

    

  

  
    
    

    Bed.py - Tools for working with bed files
    

    

    

    
 
  

    
      
          
            
  
Bed.py - Tools for working with bed files

This module contains methods for working with bed
formatted files.


Note

Another way to access the information in bed formatted
files is through pysam [https://github.com/pysam-developers/pysam].



The principal class is Bed to represent bed formatted
entries.  The method iterate() iterates over a bed file and is
aware of UCSC track information that might be embedded in the
file. Additional functions can process intervals (merge(),
binIntervals(), setName(), etc).

The method readAndIndex() can build an in-memory index of a bed-file
for quick cross-referencing.


Reference


	
class Bed.Bed

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an interval in bed format.

Coordinates are represented as 0-based, half-open intervals.

Fields in the record can be accessed as attributes or through
a dictionary type access:

print b.contig()
print b["contig"]





Bed-formatted records can have a variable number of columuns
with a minimum of 3. Accessing an optional attribute that is not present
will raise an IndexError.


	
contig

	Chromosome/contig.


	Type

	string










	
start

	Start position of the interval.


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
end

	End position of the interval.


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
name

	Name of the interval (optional).


	Type

	string










	
score

	Score associated with interval (optional).


	Type

	float [https://docs.python.org/2.7/library/functions.html#float]










	
strand

	Strand of the interval (optional).


	Type

	char










	
thickStart

	




	
thickEnd

	




	
itemRGB

	




	
blockCount

	Number of blocks for bed intervals spanning multiple blocks (BED12).


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
blockSizes

	Comma-separated list of sizes of the blocks (BED12).


	Type

	string










	
blockStarts

	Comma-separated list of start positions of the blocks (BED12).


	Type

	string










	
copy()

	Returns a new bed object that is a copy of this one






	
fromGTF(gff, is_gtf=False, name=None)

	fill fields from gtf formatted entry


	Parameters

	
	gff (a gff entry.) – The object should contain the fields contig,
start and end in 0-based, half-open coordinates.


	name (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If given, attempt to set the name atttribute of the interval
by this attribute of the gff object such as gene_id or
transcript_id.













	
toIntervals()

	return intervals for BED12 entries.

If the entry is not BED12, the whole region will be returned.


	Returns

	intervals – A list of tuples (start,end) with the block coordinates in
the Bed entry.



	Return type

	list










	
fromIntervals(intervals)

	Fill co-ordinates from list of intervals.

If multiple intervals are provided and entry is BED12 then the
blocks are automatically set.


	Parameters

	intervals (list) – List of tuples (start, end) with block coordinates.










	
property columns

	return number of columns in bed-entry.










	
class Bed.Track(line)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Bed track information.






	
Bed.iterator(infile)

	iterate over a bed formatted file.

Comments and empty lines are ignored. The iterator is
track aware and will set the track attribute for the
Bed objects it yields.


	Parameters

	infile (File) – 



	Yields

	bed – Bed object










	
Bed.bed_iterator(infile)

	Deprecated, use iterator().






	
Bed.setName(iterator)

	yield bed entries in which name is set to the record number if
unset.


	Yields

	bed – Bed object










	
Bed.grouped_iterator(iterator)

	yield bed results grouped by track.

Note that the iterator supplied needs to be sorted by the track
attribute. This is usually the case in bed formatted
files.


	Yields

	bed – Bed object










	
Bed.blocked_iterator(iterator)

	yield blocked bed results.

Intervals with the same name are merged into a single entry. This
method can be used to convert BED6 formatted entries to
BED12. Note that the input iterator needs to be sorted by bed
name.


	Yields

	bed – Bed object










	
Bed.readAndIndex(infile, with_values=False, per_track=False)

	read and index a bed formatted file in infile.

The index is not strand-aware.


	Parameters

	
	infile (File) – File object to read from.


	with_values (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, store the actual bed entry. Otherwise, just the
intervals are recorded and any additional fields will be ignored.


	per_track (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True build indices per track.






	Returns

	index – A dictionary of nested containment lists (NCL). Each
key is a contig. If per_track is set, the dictionary has an
additional first level for the track.



	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
Bed.binIntervals(iterator, num_bins=5, method='equal-bases', bin_edges=None)

	merge adjacent intervals by the score attribute.

This method takes all the intervals in the collection builds a histogram
of all the scores in the collection. The partition into the bins can use
one of the following merging methods:


	equal-bases
	merge intervals such that each bin contains the equal number of bases



	equal-intervals
	merge intervals such that each bin contains the equal number intervals





This method requires the fifth field (score) of the bed input file
to be present.


	Parameters

	
	iterator – Iterator yielding bed intervals


	num_bins (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of bins to create in the histogram


	method (string) – Binning method


	bin_edges (list) – List of bin edges. These take precedence over method.






	Returns

	
	intervals (list) – list of intervals (Bed)


	bin_edges (list) – list of bin edges















	
Bed.merge(iterator)

	merge overlapping intervals and returns a list of merged intervals.






	
Bed.getNumColumns(filename)

	return number of fields in bed-file by looking at the first
entry.


	Returns

	ncolumns – The number of columns. If the file is empty, 0 is returned.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    Blat.py - tools for working with PSL formatted files and data
    

    

    

    
 
  

    
      
          
            
  
Blat.py - tools for working with PSL formatted files and data

This module provides a class to parse PSL formatted
files such as those output by the BLAT tool.

This module defines the Blat.Match class representing a
single entry and a series of iterators to iterate of PSL
formatted files (iterator(), iterator_target_overlap(),
…).


Reference


	
exception Blat.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception Blat.ParsingError(message, line=None)

	Bases: Blat.Error

Exception raised for errors while parsing


	
message -- explanation of the error

	








	
class Blat.Match

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a psl formatted alignment.

Block coordinates are on the forward strand for target and on
the forward/reverse strand for the query depending on the strand.

The fields mQueryFrom/To and mSbjctFrom/To are always on the forward
strand.


	
convertCoordinates()

	convert coordinates.

This rescales the block positions so that they start at 0 and converts
the query to forward and the sbjct to forward/reverse coordinates.

About the psl psl format from the manual at
http://genome.ucsc.edu/google/goldenPath/help/pslSpec.html


	::
	In general the coordinates in psl files are “zero based
half open.” The first base in a sequence is numbered zero
rather than one.  When representing a range the end
coordinate is not included in the range. Thus the first 100
bases of a sequence are represented as 0-100, and the
second 100 bases are represented as 100-200.

There is a another little unusual feature in the .psl
format. It has to do with how coordinates are handled on
the negative strand.  In the qStart/qEnd fields the
coordinates are where it matches from the point of view of
the forward strand (even when the match is on the reverse
strand). However on the qStarts[] list, the coordinates are
reversed.





This class works in forward coordinates for the query and
forward/reverse coordinates for the sbjct.


	For a negative strand match, the following is done:
	
	invert mSbjctFrom and mSbjctTo with mSbjctLength


	add block sizes to mQueryStarts and mSbjctStarts


	invert mQueryStarts and mSbjctStarts


	reverse blocksize, mQueryStarts and mSbjctStarts













	
switchTargetStrand()

	switch the target strand.

Use in cases in which a feature has been defined on the
negative target strand with reverse coordinates. The result
will be the same alignment using forward coordinates on the
target.

This method will also update the query strand and coordinates.






	
fromMaq(maq)

	build BLAT entry from a MAQ match.

see Maq.Match.






	
getBlocks()

	return a list of aligned blocks.






	
getMapQuery2Target()

	return a map between query to target.

If the strand is “-”, the coordinates for query are on
the negative strand.






	
getMapTarget2Query()

	return a map between target to query.

If the strand is “-”, the coordinates for query are on
the negative strand.






	
fromMap(map_query2target, use_strand=None)

	return a map between query to target.






	
fromPair(query_start, query_size, query_strand, query_seq, target_start, target_size, target_strand, target_seq)

	fill from two aligned sequences.

Note that sequences are case-sensitive.










	
class Blat.MatchPSLX

	Bases: Blat.Match


	
fromPSL(other, query_sequence, sbjct_sequence)

	fill entry from a psl match.

sequences are on forward strand starting at
query_from and sbjct_from, respectively.










	
Blat.iterator2(infile)

	iterate over the contents of a psl file.






	
Blat.iterator(infile)

	iterate over the contents of a psl file.






	
Blat.iterator_pslx(infile)

	iterate over the contents of a pslx file.






	
Blat.iterator_target_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.






	
Blat.iterator_query_overlap(infile, merge_distance)

	iterate over psl formatted infile and return
blocks of target overlapping alignments.






	
Blat.iterator_test(infile, report_step=100000)

	only output parseable lines from infile.






	
Blat.iterator_per_query(iterator_psl)

	iterate over the contents of a psl file per query






	
Blat.addAlignments(matches, shift=0, by_query=False)

	building a genome to query alignment for all matches

The genome alignment is shifted by shift.






	
Blat.getComponents(matches, max_distance=0, min_overlap=0, by_query=False)

	return overlapping matches.


	max_distance
	allow reads to be joined if they are # residues apart.
Adjacent reads are 1 residue apart, overlapping reads are 0 residues
apart



	min_overlap
	require at least # residues to be overlapping













            

          

      

      

    

  

  
    
    

    CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice
    

    

    

    
 
  

    
      
          
            
  
CBioPortal.py - Interface with the Sloan-Kettering cBioPortal webservice

The Sloan Kettering cBioPortal webservice provides access to a
database of results of genomics experiments on various cancers. The
database is organised into studies, each study contains a number of
case lists, where each list contains the ids of a set of patients, and
genetic profiles, each of which represents an assay conducted on the
patients in the case list as part of the study.

The main class here is the CBioPortal class representing a connection
to the cBioPortal Database. Query’s are represented as methods of the
class. Study ids or names or case lists can be provided to the
constructor to the object, via the setDefaultStudy and
setDefaultCaseList methods or to the indevidual query methods. Where
ever possible the validity of parameters is checked before the query
is executed.

Whenever a query requires a genetic profile id or a list of such ids,
but none are given, the list of all profiles for which the
show_in_analysis flag is set will be used.

All of the commands provided in the webservice are implemented here
and as far as possible the name, syntax and paramter names of the
query are identical to the raw commands to the webservice. These
queries are:


	getCancerStudies,


	getCaseLists,


	getProfileData,


	getMutationData,


	getClinicalData,


	getProteinArrayInfo,


	getProteinArrayData,


	getLink,


	getOncoprintHTML.




In addition two new queries are implememented that are not part of the
webservice:


	getPercentAltered and


	getTotalAltered




These emulate the function of the website where the percent of cases
that show any alteration for the gene and profiles given are returned
(getPercentAltered, or the percent of cases that show an alteration in
any of the genes (getTotalAltered) is returned.

examples:

gene_list = [ "TP53",
"BCL2",
"MYC"  ]
portal = CBioPortal()
portal.setDefaultStudy(study = "prad_mskcc")
portal.setDefaultCaseList(case_set_id = "prad_all_complete")
portal.getPercentAltered(gene_list = gene_list)





or more tersely:

portal.CBioProtal()
portal.getPercentAltered(study = "prad_mskcc", case_set_id = "prad_all_complete",
                         gene_list = ["TP53","BCL2","MYC"],
                         genetic_profile_id =["prad_mskcc_mrna"])





Any warnings returned by the query are stored in CBioPortal.last_warnings.

Query’s that would give too long an URL are split into smaller querys
and the results combined transparently.

A commandline interface is provided for convenience, syntax:

python CBioPortal.py [options] command(s)






Reference


	
class CBioPortal.CBioPortal(url=None, study=None, study_name=None, case_list_id=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

connect to the cBioPortal Database.

If no url is specified the default url is used. A list of of valid
study ids is retrieved from the database. This both confirms that
the datavase is reachable, and provides cached checking for the
ids provided. If a study or study name is provided then this is
set as the defualt study for this session and the details of the
availible profiles and cases is retrieved.  ‘Study’ is the study
id. If both study and study_name are specified then the study id
is used.


	
getCancerStudies()

	Fetches the list of cancer studies currently in the database.

Returns list of dictionaries with three entries
‘cancer_study_id’,’name’ and ‘description’.  Also caches this
data to verify the validity of later calls






	
getGeneticProfiles(study=None, study_name=None)

	Fetches the valid genetic profiles for a particular study.

study is the study id.  If both study and study_name are
specified, study is used. If neither study nor study name is
specified then the default study is used if set, if not a
value error is raised.
Returns a list of dictionaries






	
getCaseLists(study=None, study_name=None)

	Retrieves meta-data regarding all case lists stored about a
specific cancer study.

For example, a within a particular study, only some cases may
have sequence data, and another subset of cases may have been
sequenced and treated with a specific therapeutic
protocol. Multiple case lists may be associated with each
cancer study, and this method enables you to retrieve
meta-data regarding all of these case lists.

Data is returned as a list of dictionaries with the following
entries:



	case_list_id: a unique ID used to identify the case list ID
in subsequent interface calls. This is a human readable
ID. For example, “gbm_all” identifies all cases profiles in
the TCGA GBM study.


	case_list_name: short name for the case list.


	case_list_description: short description of the case list.


	cancer_study_id: cancer study ID tied to this genetic
profile. Will match the input cancer_study_id.


	case_ids: space delimited list of all case IDs that make up
this case list.












	
getProfileData(gene_list, case_set_id=None, genetic_profile_id=None, study=None, study_name=None)

	Retrieves genomic profile data for one or more genes.

You can specify one gene and many profiles or one profile and
many genes.  If you specify no genetic profiles then all
genetic profiles for the specified or default study are used
if the case_set_id is from that study otherwise a ValueError
is raised.

Return value depends on the parameters. If you specify a
single genetic profile and multiple genes a list of ordered
dictionaries with the following entries:

gene_id: Entrez Gene ID
common: HUGO Gene Symbol
entries 3 - N: Data for each case





If you specify multi genetic profiles and a single gene, a
list of ordered dictoraries with the following entries is
returned:

genetic_profile_id: The Genetic Profile ID.
alteration_type: The Genetic Alteration Type, e.g. MUTATION, MUTATION_EXTENDED, COPY_NUMBER_ALTERATION, or MRNA_EXPRESSION.
gene_id: Entrez Gene ID.
common: HUGO Gene Symbol.
Columns 5 - N: Data for each case.










	
getMutationData(gene_list, genetic_profile_id, case_set_id=None, study=None, study_name=None)

	For data of type EXTENDED_MUTATION, you can request the full set of
annotated extended mutation data.

This enables you to, for example, determine which sequencing
center sequenced the mutation, the amino acid change that
results from the mutation, or gather links to predicted
functional consequences of the mutation.

Query Format


case_set_id= [case set ID] (required)
genetic_profile_id= [a single genetic profile IDs] (required).
gene_list= [one or more genes, specified as HUGO Gene Symbols or


Entrez Gene IDs](required)







Response Format

A list of dictionaries with the following entires


entrez_gene_id: Entrez Gene ID.
gene_symbol: HUGO Gene Symbol.
case_id: Case ID.
sequencing_center: Sequencer Center responsible for identifying



	this mutation.
	For example: broad.mit.edu.









	mutation_status: somatic or germline mutation status. all mutations
	returned will be of type somatic.





mutation_type: mutation type, such as nonsense, missense, or frameshift_ins.
validation_status: validation status. Usually valid, invalid, or unknown.
amino_acid_change: amino acid change resulting from the mutation.


	functional_impact_score: predicted functional impact score,
	as predicted by: Mutation Assessor.





xvar_link: Link to the Mutation Assessor web site.
xvar_link_pdb: Link to the Protein Data Bank (PDB) View within


Mutation Assessor web site.





	xvar_link_msa: Link the Multiple Sequence Alignment (MSA) view
	within the Mutation Assessor web site.





chr: chromosome where mutation occurs.
start_position: start position of mutation.
end_position: end position of mutation.




If a default study is set then a check will be performed to
set if the supplied case id is from the specified study. The
study can be over written using the study and study_name
parameters






	
getClinicalData(case_set_id=None, study=None, study_name=None)

	Retrieves overall survival, disease free survival and age at
diagnosis for specified cases.

Due to patient privacy restrictions, no other clinical data is
available.


case_set_id= [case set ID] (required)




A list of dictionaries with the following entries:


case_id: Unique Case Identifier.
overall_survival_months: Overall survival, in months.
overall_survival_status: Overall survival status, usually


indicated as “LIVING” or “DECEASED”.




disease_free_survival_months: Disease free survival, in months.
disease_free_survival_status: Disease free survival status,


usually indicated as “DiseaseFree” or “Recurred/Progressed”.




age_at_diagnosis: Age at diagnosis.




If a study is specified or a defualt study is set, then the
case_set_id will be tested to check if it exists for that
study.






	
getProteinArrayInfo(protein_array_type=None, gene_list=None, study=None, study_name=None)

	Retrieves information on antibodies used by reverse-phase protein
arrays (RPPA) to measure protein/phosphoprotein levels.


cancer_study_id= [cancer study ID] (required)
protein_array_type= [protein_level or phosphorylation]
gene_list= [one or more genes, specified as HUGO Gene
Symbols or Entrez Gene IDs].




A list of dictionaries with the following entires:


ARRAY_ID: The protein array ID.
ARRAY_TYPE: The protein array antibody type, i.e. protein_level


or phosphorylation.




GENE: The targeted gene name (HUGO gene symbol).
RESIDUE: The targeted resdue(s).




If no study is specified the default study is used. If that is
not specified an error is raised.






	
getProteinArrayData(protein_array_id=None, case_set_id=None, array_info=0, study=None, study_name=None)

	Retrieves protein and/or phosphoprotein levels measured by
reverse-phase protein arrays (RPPA).

case_set_id= [case set ID]
protein_array_id= [one or more protein array IDs] as list.
array_info= [1 or 0]. If 1, antibody information will also be exported.

If the parameter of array_info is not specified or it is not
1, returns a list of dictionaries with the following columns.

ARRAY_ID: The protein array ID.
Columns 2 - N: Data for each case.

If the parameter of array_info is 1, you will receive a list
of ordered dictionaries with the following entires:

ARRAY_ID: The protein array ID.
ARRAY_TYPE: The protein array antibody type, i.e. protein_level or


phosphorylation.




GENE: The targeted gene name (HUGO gene symbol).
RESIDUE: The targeted resdue(s).
Columns 5 - N: Data for each case.

If the defualt study is set then the case_set_id will be
check. The default study can be overidden using the study or
study_name parameters.






	
getLink(gene_list, study=None, study_name=None, report='full')

	return a perminant link to the cBioPortal report for the gene_list
cancer_study_id=[cancer study ID] gene_list=[a comma
separated list of HUGO gene symbols] (required)
report=[report to display; can be one of: full (default),
oncoprint_html]






	
getOncoprintHTML(gene_list, study=None, study_name=None)

	returns the HTML for the oncoprint report for the specified gene
list and study






	
setDefaultStudy(study=None, study_name=None)

	sets a new study as the default study. Will check that the study
id is valid






	
setDefaultCaseList(case_set_id, study=None, study_name=None)

	set the default case list. If study is not specified the default
study will be used.

The study will be used to check that the case_set exists.






	
getPercentAltered(gene_list, study=None, study_name=None, case_set_id=None, genetic_profile_id=None, threshold=2)

	Get the percent of cases that have one or more of the specified
alterations for each gene

study = [cancer_study_id] The study to use.


	study_name = [cancer_study_name] The name of the study to
	use. If neither this nor study are specified,
then the default is used.



	case_set_id = [case_set_id] The case list to use. If not
	specified, the default case list is used.





gene_list = [one or more genes, specified as HUGO Gene Symobls
or ENtrez Gene IDs] (require)

genetic_profile_id = [one or more genetic profile IDs] If none
specified all genetic profiles for the specified study are
used..

threhold = [z_score_threshold] the numeric threshold at which
a mrna expression z-score is said to be significant.

A list of dictionaries with the following entries
gene_id: The Entrez Gene ID
common: The Hugo Gene Symbol
altered_in: The percent of cases in which the gene is altered

One implementation note is that a guess must be made as to
wether a returned profile value represents a alteration or
not. Currently guesses are only made for copy number
variation, mrna expression and mutionation






	
getTotalAltered(gene_list, study=None, study_name=None, case_set_id=None, genetic_profile_id=None, threshold=2)

	Calculate the percent of cases in which any one of the specified genes are altered










	
exception CBioPortal.CDGSError(error, request)

	Bases: Exception

exception that handles errors returned by querys in the database









            

          

      

      

    

  

  
    
    

    FastaIterator.py - Iteration over fasta files
    

    

    

    
 
  

    
      
          
            
  
FastaIterator.py - Iteration over fasta files

This module provides a simple iterator of Fasta formatted files.  The
difference to the biopython iterator is that the iterators in this
module skip over comment lines starting with “#”.


Note

Another way to access the information in fasta formatted
files is through pysam [https://github.com/pysam-developers/pysam].




Reference


	
class FastaIterator.FastaRecord(title, sequence, fold=False)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a fasta record.


	
title

	the title of the sequence


	Type

	string










	
sequence

	the sequence


	Type

	string










	
fold

	the number of bases per line when writing out


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]














	
class FastaIterator.FastaIterator(f, *args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a iterator of fasta formatted files.


	Yields

	FastaRecord










	
FastaIterator.iterate(infile, comment='#', fold=False)

	iterate over fasta data in infile

Lines before the first fasta record are
ignored (starting with >) as well as
lines starting with the comment character.


	Parameters

	
	infile (File) – the input file


	comment (char) – comment character


	fold (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of bases before line split when writing out






	Yields

	FastaRecord










	
FastaIterator.iterate_together(*args)

	iterate synchronously over one or more fasta files.

The iteration finishes once any of the files is exhausted.

:param fasta-formatted files to be iterated upon:


	Yields

	tuple – a tuple of FastaRecord corresponding to
the current record in each file.










	
FastaIterator.count(filename)

	count number of sequences in fasta file.

This method uses the grep utility to count
lines starting with >.


	Parameters

	filename (string) – The filename



	Raises

	OSError – If the file does not exist



	Returns

	The number of sequences in the file.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    Fastq.py - methods for dealing with fastq files
    

    

    

    
 
  

    
      
          
            
  
Fastq.py - methods for dealing with fastq files

This module provides an iterator of fastq formatted files
(iterate()). Additional iterators allow guessing of the quality
score format (iterate_guess()) or converting them
(iterate_convert()) while iterating through a file.

guessFormat() inspects a fastq file to guess the quality score format
and getOffset() returns the numeric offset for quality score conversion
for a particular quality score format.


Note

Another way to access the information in fastq formatted
files is through pysam [https://github.com/pysam-developers/pysam].




Reference


	
class Fastq.Record(identifier, seq, quals, format=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A record representing a fastq formatted record.


	
identifier

	Sequence identifier


	Type

	string










	
seq

	Sequence


	Type

	string










	
quals

	String representation of quality scores.


	Type

	string










	
format

	Quality score format. Can be one of sanger,
illumina-1.8, solexa or phred64.


	Type

	string










	
guessFormat()

	return quality score format -
might return several if ambiguous.






	
guessDataType()

	return the datatype. This is done by inspecting the
sequence for basecalls/colorspace ints






	
trim(trim3, trim5=0)

	remove nucleotides/quality scores from the 3’ and 5’ ends.






	
trim5(trim5=0)

	remove nucleotides/quality scores from the 5’ ends.






	
toPhred()

	return qualities as a list of phred-scores.






	
fromPhred(quals, format)

	set qualities from a list of phred-scores.










	
Fastq.iterate(infile)

	iterate over contents of fastq file.






	
Fastq.iterate_guess(infile, max_tries=10000, guess=None)

	iterate over contents of fastq file.

Guess quality format by looking at the first max_tries entries and
then subsequently setting the quality score format for each entry.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	max_tries (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of records to examine for guessing the quality score
format.


	guess (string) – Default format. This format will be chosen in the quality
score format is ambiguous. The method checks if the guess
is compatible with the records read so far.






	Yields

	fastq – An object of type Record.



	Raises

	ValueError – If the ranges of the fastq records are not compatible,
    are incompatible with guess or are ambiguous.










	
Fastq.iterate_convert(infile, format, max_tries=10000, guess=None)

	iterate over contents of fastq file.

The quality score format is guessed and all subsequent records
are converted to format.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	format (string) – Quality score format to convert all records into.


	max_tries (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of records to examine for guessing the quality score
format.


	guess (string) – Default format. This format will be chosen in the quality
score format is ambiguous. The method checks if the guess
is compatible with the records read so far.






	Yields

	fastq – An object of type Record.



	Raises

	ValueError – If the ranges of the fastq records are not compatible,
    are incompatible with guess or are ambiguous.










	
Fastq.guessFormat(infile, max_lines=10000, raises=True)

	guess format of FASTQ File.


	Parameters

	
	infile (File) – File or file-like object to iterate over


	max_lines (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of lines to examine for guessing the quality score
format.


	raises (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Raise ValueError if format is ambiguous






	Returns

	formats – list of quality score formats compatible with the file



	Return type

	list



	Raises

	ValueError – If the ranges of the fastq records are not compatible.










	
Fastq.guessDataType(infile, max_lines=10000, raises=True)

	guess datatype of FASTQ File from [colourspace, basecalls]


	Parameters

	
	infile (File) – 


	or file-like object to iterate over (File) – 


	max_lines (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of lines to examine for guessing the datatype


	raises (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Raise ValueError if format is ambiguous






	Returns

	formats – list of datatypes compatible with the file (should only ever be one!)



	Return type

	list



	Raises

	ValueError – If the ranges of the fastq records are not compatible.










	
Fastq.getOffset(format, raises=True)

	returns the ASCII offset for a certain format.

If raises is set a ValueError is raised if there is not a single
offset. Otherwise, a minimum offset is returned.


	Returns

	offset – The quality score offset



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
Fastq.getReadLength(filename)

	return readlength from a fastq file.

Only the first read is inspected. If there are
different read lengths in the file, the result
will be inaccurate.


	Returns

	read_length



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]













            

          

      

      

    

  

  
    
    

    GFF3 - Classes, functions and iterators for working with GFF3 files
    

    

    

    
 
  

    
      
          
            
  
GFF3 - Classes, functions and iterators for working with GFF3 files

This module mostly inherits from the GTF and replaces selected
functionality to allow working with GFF3 formatted files.


	
class GFF3.Entry

	Bases: cgat.GTF.Entry

representation of a GFF3 formatted entry.

This class inherits from GTF.Entry, but changes
the parsing to reflect GFF3.


	
parseInfo(attributes, line=None)

	Parse the attributes line of an entry,
line parameter provided purely for backwards compatability






	
getAttributeField()

	return the attributes field as a ; delimied field










	
GFF3.flat_file_iterator(infile)

	simple iterator that iterators over lines in a field
and yeilds GFF3 Entry objects






	
GFF3.iterator_from_gff(gff_iterator)

	to make this slot in with other gtf using scripts,
allow copying of an entry into gff3 format. Acts via str,
probably not the most efficient way to do things






	
GFF3.chrom_iterator(gff3_iterator)

	takes a an iterator and returns an iterator over iterators,
with a new instance every time a new chromosome is found








            

          

      

      

    

  

  
    
    

    GTF.py - Classes and methods for dealing with GTF/GFF formatted files
    

    

    

    
 
  

    
      
          
            
  
GTF.py - Classes and methods for dealing with GTF/GFF formatted files

The coordinates are kept internally in python coordinates (0-based,
open-closed), but are output as inclusive 1-based coordinates
according to http://www.sanger.ac.uk/Software/formats/GFF/.

The default GTF version is 2.2.

This module uses pysam [https://github.com/pysam-developers/pysam] to provide the principal engine for iterating over
files (iterate()). As a consequence, the returned objects are of
type pysam.GTFProxy().

The class defined in this model Entry is useful for re-formatting
records.

Apart from basic iteration, this module provides the following utilities:


	Additional iterators for grouping/modifying GTF formatted files:
track_iterator(), chunk_iterator(), iterator_contigs(),
transcript_iterator(), joined_iterator(), gene_iterator(),
flat_gene_iterator(), merged_gene_iterator(),
iterator_filtered(), iterator_sorted_chunks(),
iterator_min_feature_length(), iterator_sorted()
iterator_overlapping_genes(), iterator_transcripts2genes()
iterator_overlaps()


	Compare intervals: Identity(), HalfIdentity(), Overlap()


	Read GTF formatted files and optionally index them: readFromFile(),
readAsIntervals(), readAndIndex()


	Manipulate lists of GTF records: asRanges(), CombineOverlaps(),
SortPerContig(), toIntronIntervals(), toSequence()





	
GTF.iterator(infile)

	return a simple iterator over all entries in a file.






	
GTF.track_iterator(infile)

	a simple iterator over all entries in a file.






	
GTF.chunk_iterator(gff_iterator)

	iterate over the contents of a gff file.

return entries as single element lists






	
GTF.iterator_contigs(gffs)

	iterate over contigs.

TODO: implement as coroutines






	
GTF.transcript_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of entries with the same transcript id.

Any features without a transcript_id will be ignored.

The entries for the same transcript have to be consecutive
in the file. If strict is set an AssertionError will be
raised if that is not true.






	
GTF.joined_iterator(gff_iterator, group_field=None)

	iterate over the contents of a gff file.

return a list of entries with the same group id.
Note: the entries have to be consecutive in
the file.






	
GTF.gene_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of transcripts with the same gene id.

Note: the entries have to be consecutive in the file, i.e,
first sorted by transcript and then by gene id.

Genes with the same name on different contigs are resolved
separately in strict = False.






	
GTF.flat_gene_iterator(gff_iterator, strict=True)

	iterate over the contents of a gtf file.

return a list of entries with the same gene id.

Note: the entries have to be consecutive in the file, i.e,
sorted by gene_id

Genes with the same name on different contigs are resolved
separately in strict = False






	
GTF.merged_gene_iterator(gff_iterator)

	iterate over the contents of a gtf file.

Each gene is merged into a single entry spanning the whole
stretch that a gene covers.

Note: the entries have to be consecutive in the file, i.e,
sorted by gene_id






	
GTF.iterator_filtered(gff_iterator, feature=None, source=None, contig=None, interval=None, strand=None)

	iterate over the contents of a gff file.

yield only entries for a given feature






	
GTF.iterator_sorted_chunks(gff_iterator, sort_by='contig-start')

	iterate over chunks in a sorted order

sort_by can be


	contig-start
	sort by position ignoring the strand



	contig-strand-start
	sort by position taking the strand into account



	contig-strand-start-end
	intervals with the same start position will be sorted by end position





returns the chunks.






	
GTF.iterator_min_feature_length(gff_iterator, min_length, feature='exon')

	select only those genes with a minimum length of a given feature.






	
GTF.iterator_sorted(gff_iterator, sort_order='gene')

	sort input and yield sorted output.






	
GTF.iterator_overlapping_genes(gtf_iterator, min_overlap=0)

	return overlapping genes.






	
GTF.iterator_transcripts2genes(gtf_iterator, min_overlap=0)

	cluster transcripts by exon overlap.

The gene id is set to the first transcript encountered of a gene.
If a gene stretches over several contigs, subsequent copies are
appended a number.






	
GTF.iterator_overlaps(gff_iterator, min_overlap=0)

	iterate over gff file and return a list of features that
are overlapping.

The input should be sorted by contig,start






	
GTF.Overlap(entry1, entry2, min_overlap=0)

	returns true, if entry1 and entry2 overlap by a minimum number of
residues.






	
GTF.Identity(entry1, entry2, max_slippage=0)

	returns true, if entry1 and entry2 are (almost) identical, allowing
a small amount of slippage at either end.






	
GTF.HalfIdentity(entry1, entry2, max_slippage=0)

	returns true, if entry1 and entry2 overlap and at least one end is
within max_slippage residues.






	
GTF.asRanges(gffs, feature=None)

	return ranges within a set of gffs.

Overlapping intervals are merged.

The returned intervals are sorted.






	
GTF.CombineOverlaps(old_gff, method='combine')

	combine overlapping entries for a list of gffs.

method can be any of combine|longest|shortest
only the first letter is important.






	
GTF.SortPerContig(gff)

	sort gff entries per contig and return a dictionary mapping a
contig to the begin of the list.






	
GTF.toIntronIntervals(chunk)

	convert a set of gtf elements within a transcript to intron coordinates.

Will use first transcript_id found.

Note that coordinates will still be forward strand coordinates






	
GTF.toSequence(chunk, fasta)

	convert a list of gff attributes to a single sequence.

This function ensures correct in-order concatenation on
positive/negative strand. Overlapping regions are merged.






	
GTF.readFromFile(infile)

	read records from file and return as list.






	
GTF.readAsIntervals(gff_iterator, with_values=False, with_records=False, merge_genes=False, with_gene_id=False, with_transcript_id=False, use_strand=False)

	read tuples of (start, end) from a GTF file.

This method ignores everything else but the coordinates.

The with_values, with_gene_id and with_records options are
exclusive.


	Parameters

	
	gff_iterator (iterator) – Iterator yielding GTF records.


	with_values – If True, the content of the score field is added to the tuples.


	with_records – If True, the entire record is added to the tuples.


	merge_genes – If true, the GTF records are passed through the :func:
merged_gene_iterator iterator first.


	with_gene_id – If True, the gene_id is added to the tuples.


	with_transcript_id – If True, the transcript_ids are added to the tuples.


	use_strand – If true, intervals will be grouped by contig and strand.
The default is to group by contig only.


	a dictionary of intervals by contig. (Returns) – 













	
GTF.readAndIndex(iterator, with_value=True)

	read from gtf stream and index.


	Returns

	an object of type IndexedGenome.IndexedGenome



	Return type

	index










	
exception GTF.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception GTF.ParsingError(message)

	Bases: GTF.Error

Exception raised for errors in the input.


	
message -- explanation of the error

	








	
GTF.toDot(v)

	convert value to ‘.’ if None






	
GTF.quote(v)

	return a quoted attribute.






	
class GTF.Entry

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

representation of a GTF formatted entry.


	
contig

	Chromosome/contig


	Type

	string










	
source

	The GTF source field


	Type

	string










	
feature

	The GTF feature field


	Type

	string










	
frame

	The frame


	Type

	string










	
start

	Start coordinate in 0-based coordinates, half-open coordinates


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
end

	End coordinate in 0-based coordinates, half-open coordinates


	Type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
score

	Score associated with feature


	Type

	float [https://docs.python.org/2.7/library/functions.html#float]










	
strand

	Strand of feature


	Type

	string










	
gene_id

	Gene identifier of feature. Not present for GFF formatted
data.


	Type

	string










	
transcript_id

	Transcript identifier of feature. Not present for GFF formatted
data.


	Type

	string










	
attributes

	Dictionary of additional attributes in the GFF/GTF record (last column)


	Type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
read(line)

	read gff entry from line in GTF/GFF format.

<seqname> <source> <feature> <start> <end> <score>               <strand> <frame> [attributes] [comments]






	
parseInfo(attributes, line)

	parse attributes.

This method will set the gene_id and transcript_id attributes
if present.






	
invert(lcontig)

	invert genomic coordinates from forward to reverse coordinates and
back.


	Parameters

	lcontig (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of the chromosome that the feature resides on.










	
fromGTF(other, gene_id=None, transcript_id=None)

	fill record from other GFF/GTF entry.

The optional attributes are not copied.






	
fromBed(other, **kwargs)

	fill record from a bed entry.






	
copy(other)

	fill from other entry.

This method works if other is GTF.Entry or
pysam.GTFProxy.






	
asDict()

	return attributes as a dictionary.






	
hasOverlap(other, min_overlap=0)

	returns true, if overlap with other entry.






	
isIdentical(other, max_slippage=0)

	returns true, if self and other overlap completely.






	
isHalfIdentical(other, max_slippage=0)

	returns true, if self and other overlap.












            

          

      

      

    

  

  
    
    

    IndexedFasta.py - fast random access in fasta files
    

    

    

    
 
  

    
      
          
            
  
IndexedFasta.py - fast random access in fasta files

This module provides fast random access to fasta formatted
files that have been previously indexed. The indexing can be done
either through the samtools faidx tool (accessible through pysam [https://github.com/pysam-developers/pysam]) or
using the in-house methods implemented in this module.

The main class is IndexedFasta. This is a factory function
that provides transparent access to both samtools or cgat indexed
fasta files.  The basic usage to retrieve the sequence spanning the
region chr12:10,000-10,100 is:

from IndexedFasta import IndexedFasta
fasta = IndexedFasta("hg19")
fasta.getSequence("chr12", "+", 10000, 10100)





To index a file, use the scripts/index_fasta command line utility or the
createDatabase() function:

> python index_fasta.py hg19 chr*.fa





This module has some useful utility functions:


	splitFasta()
	split a fasta formatted file into smaller pieces.



	parseCoordinates()
	parse a coordinate string in various formats





but otherwise the module contains a multitude of additional functions that are
only of internal use.


Reference


	
IndexedFasta.writeFragments(outfile_fasta, outfile_index, fragments, mangler, size, write_all=False)

	write mangled fragments to outfile_fasta in chunks of size
updating outfile_index.

returns part of last fragment that has not been written and is
less than size and the number of fragments output.

If write_all is True, all of the fragments are written to
the file and the last file position is added to outfile_index
as well.






	
class IndexedFasta.Translator

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

translate a sequence.






	
class IndexedFasta.TranslatorPhred(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate phred quality scores.






	
class IndexedFasta.TranslatorSolexa(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate solexa quality scores.






	
class IndexedFasta.TranslatorRange200(*args, **kwargs)

	Bases: IndexedFasta.Translator

translate pcap quality scores.

For example for PCAP scores.

These scores range from 0 to 100 and are the
“a weighted sum of input base quality values
(Huang and Madan 1999)

The numerical values from 0 to 200 are stored
as values form 33 to 233
“






	
class IndexedFasta.TranslatorBytes(*args, **kwargs)

	Bases: IndexedFasta.Translator

output binary values as bytes permitting values from 0 to 255

Note the resulting file will not be iterable as newline is not
a record-separator any more.






	
IndexedFasta.createDatabase(db, iterator, force=False, synonyms=None, compression=None, random_access_points=None, regex_identifier=None, clean_sequence=False, ignore_duplicates=False, allow_duplicates=False, translator=None)

	index files in filenames to create database.

Two new files are created - db.fasta and db_name.idx

If compression is enabled, provide random access points
every # bytes.

Dictzip is treated as an uncompressed file.

regex_identifier: pattern to extract identifier from description line.
If None, the part until the first white-space character is used.

translator: specify a translator






	
class IndexedFasta.cgatIndexedFasta(dbname)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an indexed fasta file.


	
setTranslator(translator=None)

	set the Translator to use.






	
getDatabaseName()

	returns the name of the database.






	
getToken(contig)

	check if token is in index.






	
getLength(contig)

	return sequence length for sbjct_token.






	
getLengths()

	return all sequence lengths.






	
compressIndex()

	compress index.
Creates a database interface to an index.






	
getContigs()

	return a list of contigs (no synonyms).






	
getContigSizes(with_synonyms=True)

	return hash with contig sizes including synonyms.






	
setConverter(converter)

	set converter from coordinate system to 0-based, both strand,
open/closed coordinate system.






	
getSequence(contig, strand='+', start=0, end=0, converter=None, as_array=False)

	get a genomic fragment.

A genomic fragment is identified by the coordinates
contig, strand, start, end.

The converter function supplied translated these coordinates
into 0-based coordinates. By default, start and end are assumed
to be pythonic coordinates and are forward/reverse coordinates.

If as_array is set to true, return the AString object. This might
be beneficial for large sequence chunks. If as_array is set to False,
return a python string.






	
getRandomCoordinates(size)

	returns coordinates for a random fragment of size #.

The coordinates are forward/reverse.

Default sampling mode:

Each residue has the same probability of being
in a fragment. Thus, the fragment can be smaller than
size due to contig boundaries.










	
class IndexedFasta.PysamIndexedFasta(dbname)

	Bases: IndexedFasta.cgatIndexedFasta

interface a  pysam/samtools indexed fasta file with the
cgatIndexedFasta API.


	
getSequence(contig, strand='+', start=0, end=0, converter=None, as_array=False)

	get a genomic fragment.

A genomic fragment is identified by the coordinates
contig, strand, start, end.

The converter function supplied translated these coordinates
into 0-based coordinates. By default, start and end are assumed
to be pythonic coordinates and are forward/reverse coordinates.

If as_array is set to true, return the AString object. This might
be beneficial for large sequence chunks. If as_array is set to False,
return a python string.










	
IndexedFasta.IndexedFasta(dbname, *args, **kwargs)

	factory function for IndexedFasta objects.






	
IndexedFasta.getConverter(format)

	return a converter function for converting various
coordinate schemes into 0-based, both strand, closed-open ranges.

converter functions have the parameters
x, y, s, l: with x and y the coordinates of
a sequence fragment, s the strand (True is positive)
and l being the length of the contig.

Format is a “-” separated combination of the keywords
“one”, “zero”, “forward”, “both”, “open”, “closed”:

zero/one: zero or one-based coordinates
forward/both: forward coordinates or forward/reverse coordinates
open/closed: half-open intervals (pythonic) or closed intervals






	
IndexedFasta.benchmarkRandomFragment(fasta, size)

	returns a random fragment of size.






	
IndexedFasta.verify(fasta1, fasta2, num_iterations, fragment_size, stdout=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, quiet=False)

	verify two databases.

Get segment from fasta1 and check for presence in fasta2.






	
IndexedFasta.splitFasta(infile, chunk_size, dir='/tmp', pattern=None)

	split a fasta file into a subset of files.

If pattern is not given, random file names are chosen.






	
IndexedFasta.parseCoordinates(s)

	parse a coordinate string.

The coordinate string can be various formats, such as
chr1:+:10:1000, chr1:10..1000.


	Returns

	
	contig (string) – The chromosome/contig.


	strand (char) – Strand. If not present, set to “+”.


	start (int) – Start of interval


	end (int) – End of interval. If not present, set to start + 1.


















            

          

      

      

    

  

  
    
    

    IndexedGenome.py - Random access to interval lists
    

    

    

    
 
  

    
      
          
            
  
IndexedGenome.py - Random access to interval lists

This module provides a consistent front-end to various interval containers.

Two implementations are available:


	NCL
	Nested containment lists as described in
http://bioinformatics.oxfordjournals.org/content/23/11/1386.short. The
implemenation was taken from pygr [http://code.google.com/p/pygr].



	quicksect
	Quicksect algorithm used in Galaxy, see here [https://github.com/brentp/quicksect].  This requires python.bx
to be installed. The benefit of quicksect is that it allows also
quick retrieval of intervals that are closest before or after an query.





The principal clas is IndexedGenome which uses NCL and stores
a value associated with each interval. Quicksect is equivalent
to IndexedGenome but uses quicksect. The Simple is a
light-weight version of IndexedGenome that does not store a
value and thus preserves space.

The basic usage is:

from IndexedGenome import IndexedGenome
index = IndexedGenome()
for contig, start, end, value in intervals:
   index.add(contig, start, end, value)

print index.contains("chr1", 1000, 2000)
print index.get("chr1", 10000, 20000)





The index is built in memory.


Reference


	
class IndexedGenome.IndexedGenome

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Genome with indexed intervals.


	
index_factory

	alias of cgat.NCL.NCL






	
get(contig, start, end)

	return intervals overlapping with key.










	
class IndexedGenome.Simple(*args, **kwargs)

	Bases: IndexedGenome.IndexedGenome

index intervals without storing a value.


	
index_factory

	alias of cgat.NCL.NCLSimple










	
class IndexedGenome.Quicksect(*args, **kwargs)

	Bases: IndexedGenome.IndexedGenome

index intervals using quicksect.

Permits finding closest interval in case there is
no overlap.


	
get(contig, start, end)

	return intervals overlapping with key.






	
before(contig, start, end, num_intervals=1, max_dist=2500)

	get closest interval before start.






	
after(contig, start, end, num_intervals=1, max_dist=2500)

	get closest interval after end.













            

          

      

      

    

  

  
    
    

    Sra.py - Methods for dealing with short read archive files
    

    

    

    
 
  

    
      
          
            
  
Sra.py - Methods for dealing with short read archive files

Utility functions for dealing with SRA formatted files from
the Short Read Archive.

Requirements:
* fastq-dump >= 2.1.7


Code


	
Sra.peek(sra, outdir=None)

	return the full file names for all files which will be extracted


	Parameters

	outdir (path) – perform extraction in outdir. If outdir is None, the extraction
will take place in a temporary directory, which will be deleted
afterwards.



	Returns

	
	files (list) – A list of fastq formatted files that are contained in the archive.


	format (string) – The quality score format in the fastq formatted files.















	
Sra.extract(sra, outdir, tool='fastq-dump')

	return statement for extracting the SRA file in outdir.
possible tools are fastq-dump and abi-dump. Use abi-dump for colorspace






	
Sra.prefetch(sra)

	Use prefetch from the SRA toolkit to download the local cache






	
Sra.clean_cache(sra)

	Remove the specified SRA file from the cache.






	
Sra.fetch_ENA(dl_path, outdir, protocol='ascp')

	Fetch fastq from ENA given accession






	
Sra.fetch_ENA_files(accession)

	Get the names of the files matching the ENA accession






	
Sra.fetch_TCGA_fastq(acc, filename, token=None, outdir='.')

	Get Fastq file from TCGA repository. Because of the nature of the
TCGA repository it assumes certain things:



	That data is paired-end fastq


	That the files end in _1.fastq or _2.fastq












	
Sra.fetch_TCGA_BAM(acc, token, outdir='.', filter_bed=None)

	Get BAM file from TCGA repository based on UUID. Will return
statement and path/filename of downloaded file. A bed file may be
provided to filter to remove contigs not present in the
reference genome






	
Sra.process_remote_BAM(infile, token=None, outdir='.', filter_bed=None)

	generate statement from .remote file









            

          

      

      

    

  

  
    
    

    VCF.py - Tools for working with VCF files
    

    

    

    
 
  

    
      
          
            
  
VCF.py - Tools for working with VCF files

The parser for VCF files is very simplistic.


Note

Another way to access the information in vcf formatted
files is through pysam [https://github.com/pysam-developers/pysam].



The Variant Call Format (vcf) is described
at http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0


Reference


	
class VCF.VCFEntry(data, samples)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A VCF Entry






	
class VCF.VCFFile(infile)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A VCF File









            

          

      

      

    

  

  
    
    

    AString.py - strings as arrays of characters
    

    

    

    
 
  

    
      
          
            
  
AString.py - strings as arrays of characters

This module provides the AString class to efficiently
represent long, chromosomal nucleotide sequences in memory.


Reference


	
class AString.AString(*args)

	Bases: array.array [https://docs.python.org/2.7/library/array.html#array.array]

implementation of a string as an array.

This class conserves memory as it uses only 1 byte per letter,
while python strings use the machine word size for a letter.

It adds a subset of the python string class such as upper() and
lower() for convenience. Slicing and printing return strings.

The AString can be constructed by any iterable that is
accepted by the constructor of array.array [https://docs.python.org/2.7/library/array.html#array.array].


	
upper()

	return upper case version.






	
lower()

	return lower case version.













            

          

      

      

    

  

  
    
    

    Genomics.py - Tools for working with genomic data
    

    

    

    
 
  

    
      
          
            
  
Genomics.py - Tools for working with genomic data


	Tags

	Python






Reference


	
Genomics.parse_region_string(s)

	parse a genomic region string.

Returns tuple of contig, start, end. Missing values are None.






	
Genomics.reverse_complement(s)

	reverse complement a sequence.

>>> complement("ACATACATACTA")
'TAGTATGTATGT'






	Returns

	



	Return type

	string










	
Genomics.GetHID(sequence)

	returns a hash value for a sequence.

The hash value is computed using md5 and converted
into printable characters.

>>> GetHID("ACATACATACTA")
'trcPGx9VNT36XMlG0XvUBQ'






	Returns

	



	Return type

	A hash value










	
Genomics.String2Location(s)

	convert a string to location information.

>>> String2Location("chr1:12:15")
('chr1', '+', 12, 15)






	Returns

	
	contig (string)


	strand (string)


	start (int)


	end (int)















	
Genomics.readContigSizes(infile)

	read sizes of contigs from file.


	Parameters

	infile (string) – Filename of tsv separated file.



	Returns

	



	Return type

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
Genomics.forceForwardCoordinates(start, end, strand, length)

	return forward coordinates.

If strand is negative, the coordinates in a and b
will be converted. If they are on the positive
strand, they will be returned as is.


	Parameters

	
	start (int [https://docs.python.org/2.7/library/functions.html#int]) – Start coordinate


	end (int [https://docs.python.org/2.7/library/functions.html#int]) – End coordinate


	strand (string) – Strand of interval. The values of “-”, “0”, “-1” indicate
a negative strand.


	length (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of chromosome.













	
Genomics.CountGeneFeatures(first_position, alignment, genomic_sequence=None, border_stop_codon=0, stop_codons=('TAG', 'TAA', 'TGA'))

	calculate number of genomic features in a peptide to genome
alignment.

Note that codons can be split, for example:

S 0 2 5 0 2 I 0 17541 3 0 2 S 1 2 5 0 2 I 0 27979 3 0 2 S 1 2






	Parameters

	
	first_position (int [https://docs.python.org/2.7/library/functions.html#int]) – Start of alignment on genome.


	alignment (string) – Alignment in CIGAR format, for example from exonerate_.


	genomic_sequence (string) – Genomic sequence for alignment


	border_stop_codon (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of codons that are ignored at the edges of match
regions.  border_stop_codon should be divisible by three.


	stop_codons (list) – List of stop codons






	Returns

	
	nintrons (int) – Number of introns


	nframeshifts (int) – Number of frameshifts in aligment.


	ngaps (int) – Number of gaps in aligment.


	nsplit (int) – Number of codons split by introns in alignment.


	nstopcodons (int) – Number of stop codons in alignment.


	disruptions (list) – List of disruptions in the prediction. Each
disruption is a tuple of ( “stop|frameshift”, position in protein,
position in cds, position on genomic sequence).















	
Genomics.Alignment2String(alignment)

	convert a tuple alignment to an alignment string.






	
Genomics.String2Alignment(source)

	convert an alignment string to a tuple alignment.






	
Genomics.GetAlignmentLength(alignment)

	return Alignment length






	
Genomics.Alignment2ExonBoundaries(alignment, query_from=0, sbjct_from=0, add_stop_codon=1)

	extract exon coordinates from a peptide2genome alignment.


	Parameters

	
	aligment (list) – List of tuples of the alignment in CIGAR format.


	query_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on peptide sequence.


	sbjct_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on nucleotide sequence.


	add_stop_codon (int [https://docs.python.org/2.7/library/functions.html#int]) – Add final stop codon to exon boundaries.






	Returns

	exons – A list of exons. Each exon is a tuple of (query_from,
query_pos, frame, sbjct_from, sbjct_pos, ali)



	Return type

	list










	
Genomics.RemoveFrameShiftsFromAlignment(row_ali, col_ali, gap_char='-')

	remove frame shifts in an alignment.

Frameshifts are gaps are 1, 2, 4, or 5 residues long.

>>> RemoveFrameShiftsFromAlignment("ABC-EFG", "AB-DEFG")
('ABEFG', 'ABEFG')






	Parameters

	
	row_ali (string) – Alignment string of row.


	col_ali (string) – Alignment string of column.


	gap_char (string) – Gap character to identify aligments.






	Returns

	
	new_row_ali (string) – New alignment string for row


	new_col_ali (string) – New aligment string for column















	
Genomics.MaskStopCodons(sequence, stop_codons=('TAG', 'TAA', 'TGA'))

	mask stop codons in a sequence.

Stop codons are masked with NNN.


	Parameters

	
	sequence (string) – Nucleotide sequence to mask.


	stop_codons (string) – List of known stop codons.






	Returns

	masked_sequence



	Return type

	string










	
Genomics.Alignment2DNA(alignment, query_from=0, sbjct_from=0)

	convert a peptide2genome alignment to a nucleotide2nucleotide
alignment.

Instead of peptide coordinates, the alignment will be
in codon coordinates.


	Parameters

	
	aligment (list) – List of tuples of the alignment in CIGAR format.


	query_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on peptide sequence.


	sbjct_from (int [https://docs.python.org/2.7/library/functions.html#int]) – Start position of alignment on nucleotide sequence.






	Returns

	alignment – The alignment as an alignlib.AlignmentVector object.



	Return type

	object [https://docs.python.org/2.7/library/functions.html#object]










	
Genomics.encodeGenotype(code)

	encode genotypes like GG, GA into a one-letter code.
The returned code is lower case if code[0] < code[1], otherwise
it is uppercase.






	
Genomics.decodeGenotype(code)

	decode single letter genotypes like m, M into two letters.
This is the reverse operation to encodeGenotype().






	
Genomics.resolveAmbiguousNA(code)

	resolve ambiguous nucleic acid letters.






	
Genomics.resolveReverseAmbiguousNA(genotype)

	map a genotype to a single letter amino acid amiguous code,
for example, CT -> Y.






	
Genomics.GetMapAA2Codons()

	returns a map of amino acids to codons

No stop codons.
.






	
Genomics.MapCodon2AA(codon, is_seleno=False, ignore_n=True)

	map a codon to an amino acid using the standard translation
tables

The mapping returns gaps as gaps and will return an amino acid
for incomplete codons if there is unambiguous mapping.

If is_seleno is set, the codon is translated for a selenoprotein.

If ignore_n is set, codons with n are returned
as ? in order to distinguish them from stop codons.

Amino acids are returned as upper-case letters.






	
Genomics.Alignment2PeptideAlignment(alignment, query_from=0, sbjct_from=0, genomic_sequence=None)

	convert a Peptide2DNA aligment to a Peptide2Peptide alignment.

How to handle frameshifts?






	
Genomics.translate(sequence, is_seleno=False, prefer_lowercase=True, ignore_n=False)

	convert DNA sequence to a peptide sequence

If is_seleno is set, “TGA” codons are treated as
encoding for selenocysteine.

If ignore_n is set, codons with n are returned
as ? in order to distinguish them from stop codons.






	
Genomics.TranslateDNA2Protein(*args, **kwargs)

	convert a DNA sequence to a peptide sequence.
keep case.

deprecated - use translate() instead.






	
Genomics.Alignment2CDNA(alignment, query_from=0, sbjct_from=0, genome=None, remove_frameshifts=0)

	build cDNA sequence from genomic fragment and
return alignment of query to it.






	
Genomics.Exons2Alignment(exons)

	build an cigar alignment string from a list of exons.






	
Genomics.AlignmentProtein2CDNA(src, exons1=None, exons2=None)

	convert a peptide alignment to a nucleotide
alignment.

multiplies coordinates with 3.
Insert introns.

Note: alignment starts at 1






	
Genomics.GetDegenerateSites(seq1, seq2, degeneracy=4, position=3)

	returns two new sequenes containing only degenerate sites.

Only unmutated positions are counted.






	
class Genomics.SequencePairInfo

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

the first characters are ACGT.


	
getGCContent()

	return GC content.










	
class Genomics.SequencePairInfoCodons

	Bases: Genomics.SequencePairInfo

the first characters are ACGT.






	
Genomics.AlignedPair2SubstitutionMatrix(seq1, seq2, alphabet)

	given a pair of sequences, calculate
a substitution matrix for the given alphabet.






	
Genomics.CalculatePairIndices(seq1, seq2, gap_char='-', with_codons=False)

	returns number of idential and transitions/transversions substitutions
in the alignment.

If with-codons = True, synonymous and nonsynonymous changes will
be recorded as well. The routine assumes no frame-shifts and will
count more than one change as non-synonymous.






	
Genomics.makeSubstitutionMatrix(type='EMBOSS')

	make alignator with DNA substitution matrix.

EMBOSS style matrix:
identity = 5
mismatch = -4
gop = -16
gep = -4

ClustalW style matrix:
match = 1 mismatch = 0
gop = -10 gep = -0.1






	
Genomics.CalculateRCSUValuesFromCounts(counts, pseudo_counts=0)

	calculate RCSU values for codons.

RCSU = relative frequency / uniform frequency






	
Genomics.CalculateCodonFrequenciesFromCounts(counts, pseudo_counts=0)

	calculate codon frequencies from codon counts per amino acid.
pseudo_counts are added if desired.






	
Genomics.CalculateCAIWeightsFromCounts(counts, pseudo_counts=0)

	calculate CAI weights from codon counts.
pseudo_counts are added if desired.






	
Genomics.IsJunk(contig)

	returns true, if contigs is likely to be junk.

This is done by name matching. Junk contigs contain either
one of the following:

random, unknown, chrU, chU.






	
Genomics.CountCodons(sequence)

	count the codons in a sequence.






	
Genomics.GetUniformCodonUsage()

	get list of frequencies for codons expected for uniform codon usage.






	
Genomics.GetBiasedCodonUsage(bias=1.0)

	get list of frequencies for codons according to some bias.

The first codon for each aa is the most biased, all others are less biased.

The ratio determines the relative bias between the first and all other
codons. 0.0 is no bias, 1.0 is complete bias.






	
Genomics.convertStrand(strand)

	convert various strand notations into [+-.].






	
Genomics.GetIntronType(sequence, both_strands=False)

	return intron type for an intronic sequence.

If both_strands is True, both strands are checked.






	
Genomics.printPrettyAlignment(seq1, *args)

	print a pretty alignment.






	
Genomics.ReadPeptideSequences(infile, filter=None, as_array=False, regex_identifier=None)

	read peptide sequence from fasta infile.






	
Genomics.ParseFasta2Hash(infile, filter=None, regex_identifier=None)

	read fasta formatted sequences file and build a hash.

Keys are all characters before the first whitespace in the
description line.

Previously, if the key contained a “:”, everything before the “:”
was removed.  This is not true any more.

Use array for higher space efficiency.

If regex_identifier is given, this is used to extract the identifier
from the fasta description line.









            

          

      

      

    

  

  
    
    

    Intervals.py - Utility functions for working with intervals
    

    

    

    
 
  

    
      
          
            
  
Intervals.py - Utility functions for working with intervals

This module contains utility functions for working intervals
or list of intervals.

An interval is a tuple of a start and end coordinate in python’s
0-based, half-open notation such as:

(12, 20)





An interval list is simply a list of such intervals.

The majority of the functions in this module take one or more lists of
intervals and return one or more new lists of intervals.


Reference


	
Intervals.getLength(intervals)

	return sum of intervals lengths.

>>> getLength([(10,20), (30,40)])
20










	
Intervals.combine(intervals)

	combine overlapping and adjacent intervals.

>>> combine([(10,20), (30,40)])
[(10, 20), (30, 40)]
>>> combine([(10,20), (20,40)])
[(10, 40)]
>>> combine([(10,20), (15,40)])
[(10, 40)]










	
Intervals.prune(intervals, first=None, last=None)

	truncates all intervals that are extending beyond first or last.

Empty intervals are deleted.






	
Intervals.complement(intervals, first=None, last=None)

	complement a list of intervals with intervals not in list.

>>> complement([(10,20), (15,40)])
[]
>>> complement([(10,20), (30,40)])
[(20, 30)]
>>> complement([(10,20), (30,40)], first=5)
[(5, 10), (20, 30)]






	Parameters

	
	intervals (list) – List of intervals


	first (int [https://docs.python.org/2.7/library/functions.html#int]) – First position. If given, the interval from first to
the first position in intervals is added.


	last (int [https://docs.python.org/2.7/library/functions.html#int]) – Last position. If given, the interval from the last position
in intervals to last is added.






	Returns

	intervals – A new list of intervals



	Return type

	list










	
Intervals.addComplementIntervals(intervals, first=None, last=None)

	complement a list of intervals with intervals not
in list and return both.

The resulting interval list is sorted.






	
Intervals.joined_iterator(intervals1, intervals2)

	iterate over the combination of two intervals.

returns the truncated intervals delineating the
ranges of overlap between intervals1 and intervals2.






	
Intervals.intersect(intervals1, intervals2)

	intersect two interval sets.

Return a set of intervals that is spanned by intervals in
both sets. Returns the union of the two intervals.






	
Intervals.truncate(intervals1, intervals2)

	truncate intervals in intervals1 by intervals2

Example: truncate( [(0,5)], [(0,3)] ) = [(3,5)]






	
Intervals.calculateOverlap(intervals1, intervals2)

	calculate overlap between two list of intervals.

The intervals within each set should not be overlapping.






	
Intervals.fromArray(a)

	get intervals from a binary array.






	
Intervals.combineAtDistance(intervals, min_distance)

	combine a list intervals and merge those that are less than a
certain distance apart.






	
Intervals.getIntersections(intervals)

	return regions were two intervals are overlapping.






	
Intervals.RemoveIntervalsContained(intervals)

	remove intervals that are fully contained in another

[(10, 100), (20, 50), (70, 120), (130, 200), (10, 50), (140, 210), (150, 200)]

results:

[(10, 100), (70, 120), (130, 200), (140, 210)]






	
Intervals.RemoveIntervalsSpanning(intervals)

	remove intervals that are full covering
another, i.e. always keep the smallest.

[(10, 100), (20, 50), (70, 120), (40,80), (130, 200), (10, 50), (140, 210), (150, 200)]

result:

[(20, 50), (40, 80), (70, 120), (150, 200)]






	
Intervals.ShortenIntervalsOverlap(intervals, to_remove)

	shorten intervals, so that there is no
overlap with another set of intervals.

assumption: intervals are not overlapping









            

          

      

      

    

  

  
    
    

    Motifs.py -
    

    

    

    
 
  

    
      
          
            
  
Motifs.py -


	Tags

	Python






Code


	
Motifs.countMotifs(infile, motifs)

	find regular expression motifs in
sequences within fasta formatted infile.






	
Motifs.getCounts(matches)

	count numbers of motifs.






	
Motifs.getOccurances(matches)

	count numbers of motifs, but only once per sequence






	
Motifs.iupac2regex(pattern)

	convert iupac to regex pattern






	
Motifs.regex2iupac(pattern)

	convert regex to iupac pattern









            

          

      

      

    

  

  
    
    

    SequencePairProperties.py - Computing metrics for aligned sequences
    

    

    

    
 
  

    
      
          
            
  
SequencePairProperties.py - Computing metrics for aligned sequences

This module provides methods for extracting and reporting sequence
properties of aligned nucleotide sequences such as percent identity,
substitution rate, etc. Usage is the same as
SequencePairProperties.


Reference


	
class SequencePairProperties.SequencePairPropertiesDistance(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairProperties

base class for distance estimators.






	
class SequencePairProperties.SequencePairPropertiesBaseML(options, *args, **kwargs)

	Bases: SequencePairProperties.SequencePairPropertiesDistance

Counts for nucleic acid sequences.

The first characters are ACGT.


	
loadPair(seq1, seq2)

	load sequence properties from a pair.










	
class SequencePairProperties.SequencePairPropertiesCountsNa(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairProperties

Counts for nucleic acid sequences.

The first characters are ACGT.


	
buildSubstitutionMatrix(seq1, seq2, alphabet)

	given a pair of sequences, calculate
a substitution matrix for the given alphabet.






	
loadPair(seq1, seq2)

	load sequence properties from a pair.










	
class SequencePairProperties.SequencePairPropertiesCountsCodons

	Bases: SequencePairProperties.SequencePairPropertiesCountsNa

the first characters are ACGT.






	
class SequencePairProperties.SequencePairPropertiesPID(*args, **kwargs)

	Bases: SequencePairProperties.SequencePairPropertiesDistance

Percent identity.

The percent identity is the ratio of the number of identical
residues divided by the number of aligned residues.


	
loadPair(seq1, seq2)

	load sequence properties from a pair.













            

          

      

      

    

  

  
    
    

    SequenceProperties.py - Computing metrics of nucleotide sequences
    

    

    

    
 
  

    
      
          
            
  
SequenceProperties.py - Computing metrics of nucleotide sequences

This module provides methods for extracting and reporting sequence
properties of nucleotide sequences such as the composition, length,
etc.

The classes provide the algorithms to provide the property. They will
store the latest result for output. Thus, processing is a two-step
procedure:

from SequenceProperties import SequencePropertiesLength
from SequenceProperties import SequencePropertiesNA

counters = [SequencePropertiesLength(), SequencePropertiesNA()]

# output column headers
headers = sum(c.getHeaders() for c in counters]
print "      ".join(headers)

for sequence in sequences:
   # load sequence in each counter
   for c in counters:
       c.loadSequence(sequence)
   # output results
   print "   ".join(map(str, counters))





This design is useful to compute multiple properties while iterating
only once over an input file and output a single, multi-column table.


Note

While useful and in working order, the design of the classes is
cumbersome.




Reference


	
class SequenceProperties.SequenceProperties

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class.

This class is the base class for SequenceProperty objects. Derived
classes need to overload most of its methods.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesSequence

	Bases: SequenceProperties.SequenceProperties

Add properties: the actual sequence.


	sequence
	The sequence





This class outputs the actual sequence supplied.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesHid

	Bases: SequenceProperties.SequenceProperties

Add properties: a hash of sequence


	hid
	Hash identifier of a sequence





The hash is computed using the md5 algorithm and the resulting
byte sequence is then translated into printable characters.


	
loadSequence(sequence, seqtype='na')

	load hid sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesLength

	Bases: SequenceProperties.SequenceProperties

Add properties: sequence length and number of codons


	length
	Sequence length



	ncodons
	Length in codons





The number of codons is 0 for an amino-acid sequence.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesNA(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add properties: nucleotide composition


	nUnk
	Number of unknown residues



	nA, nC, nG, nT, nGC, nAT
	Nucleotide counts



	pA, pC, pG, pT, pGC, pAT
	Nucleotide frequencies






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesDN(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : dinucleotide counts


	nAA, nAC, …
	Dinucleotide counts



	mCountsOthers
	Unknown dinucleotides






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCpg(reference_usage=[])

	Bases: SequenceProperties.SequencePropertiesNA, SequenceProperties.SequencePropertiesDN

Add Properties : CpG density and observed / expected.


	CpG_count
	Number of CpG in sequence



	CpG_density
	CpG density, number of CpG divided by 2 * sequence length



	CpG_ObsExp
	Ratio of observed to expected number of CpG. The latter is
calculated as the product of nC * nG. The ratio is normalized
by the sequence length.  Set to 0 if no C or G in
sequence.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesGaps(gap_chars='xXnN', *args, **kwargs)

	Bases: SequenceProperties.SequenceProperties

Add Properties : number of gaps in a sequence

Gaps are identified by unknown characters ([XN])


	ngaps
	Number of gap characters in sequnce



	nseq_regions
	Number of ungapped regions



	ngap_regions
	Number of gapped regions






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
addProperties(other)

	add properties.










	
class SequenceProperties.SequencePropertiesDegeneracy

	Bases: SequenceProperties.SequencePropertiesLength

Add properties : codon degeneracy


	nstops
	Number of stop codons



	nsites1d
	Number of non-degenerate sites



	nsites2d, nsites3d, nsites4d
	Number 2-fold, 3-fold, 4-fold degenerate sites



	ngc
	Number of positions containing either G or C



	ngc3
	Number of 3rd codon position containing G or C



	ngc3
	Number of non-degenerate 3rd codon position containing G or C



	n2gc3, n3gc3, n4gc3
	Number of 2-fold, 3-fold, 4-fold degenerate 3rd codon positions
containing G or C



	pgc
	Percentage of positions containing either G or C



	pgc3
	Percentage of 3rd codon position containing G or C



	pgc3
	Percentage of non-degenerate 3rd codon position containing G or C



	p2gc3, p3gc3, p4gc3
	Percentage of 2-fold, 3-fold, 4-fold degenerate 3rd codon positions
containing G or C





The degeneracies for amino acids are:

2: MW are non-degenerate.
9: EDKNQHCYF are 2-fold degenerate.
1: I is 3-fold degenerate
5: VGATP are 4-fold degenerate.
3: RLS are 2-fold and four-fold degenerate.
   Depending on the first two codons, the codons are counted
   as two or four-fold degenerate codons. This is encoded
   in the file Genomics.py.





The number of degenerate sites is computed across all
codon positions.


	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
updateProperties()

	update fields from counts.










	
class SequenceProperties.SequencePropertiesAA(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : amino acid composition of nucleotide sequence.

The codons in the nucleotide sequence are translated into amino
acids before counting. The nucleotide sequence must be a multiple
of 3.


	nA, nC, nD, …
	Amino acid counts.



	pA, pC, pD, …
	Amino acid frequencies.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.






	
getHeaders()

	Return list of data headers










	
class SequenceProperties.SequencePropertiesAminoAcids(reference_usage=[])

	Bases: SequenceProperties.SequenceProperties

Add Properties : amino acid composition


	nA, nC, nD, …
	Amino acid counts.



	pA, pC, pD, …
	Amino acid frequencies.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCodons

	Bases: SequenceProperties.SequencePropertiesLength

Add Properties : codon frequencies


	nAAA, nAAC, …
	Codon counts



	pAAA, pAAC, …
	Codon frequencies






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesCodonUsage

	Bases: SequenceProperties.SequencePropertiesCodons

Add properties : Codon usage

The codon frequency is the ratio of the number of times a
particular codon is used for a particular amino acid, didived the
number of times that particular amino acid appears in the
sequence. A ratio of 1.0 means that this particular codon is
always used to encode its amino acid, while a frequency of 0.5
means it is used 50% of the times.


	rAAA, rAAC, …
	Codon frequencies.






	
addProperties(other)

	add properties.










	
class SequenceProperties.SequencePropertiesCodonTranslator

	Bases: SequenceProperties.SequencePropertiesCodonUsage

Add properties : codon sequence is translated into frequencies.


	tsequence
	comma separated list of codon frequencies. The frequencies are
in percentages.






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesBias(reference_usage=[], pseudocounts=0)

	Bases: SequenceProperties.SequencePropertiesCodons

Add properties : bias measures of codon sequence.

This class outputs metrics showing how biased the codon usage in a
particular sequence is compared to a reference codon usage.  The
reference codon usage is given as a dictionary of codon
frequencies and multiple dictionaries can be given to compute the
bias against multiple codon usages.


	entropy
	Entropy of the sequence.



	ml0, ml1, …
	Message length of sequence compared to reference codon
usages.



	relml0, relml1, …
	Relative message length of sequence compared to reference codon
usages. The relative message length is the message lenght divided
by the number of codons.



	relentropy0, relentropy1, …
	Relative entropy of sequence compared to reference codon usages.
Also called conditional entropy or encoding cost.



	kl0, kl1, …
	Kullback-Leibler Divergence (relative entropy) of sequence compared
to reference codon usages.






	Parameters

	
	reference_usage (list) – A list of codon frequency tables. The bias will be computed
against each.


	pseudocounts (int [https://docs.python.org/2.7/library/functions.html#int]) – Pseudo-counts to add









	
getMessageLength(usage)

	return message length of a sequence
in terms of its reference usage.






	
getEntropy(usage=None)

	return entropy of a source in terms of a reference usage.
Also called conditional entropy or encoding cost.

Note that here I compute the sum over 20 entropies,
one for each amino acid.

If not given, calculate entropy.






	
getKL(usage)

	return Kullback-Leibler Divergence (relative entropy) of sequences with
respect to reference codon usage.










	
class SequenceProperties.SequencePropertiesCounts(alphabet)

	Bases: SequenceProperties.SequenceProperties

Add Properties : Residue counts against arbirtrary alphabet


	nUnk
	Number of unknown residues



	nA, nB, …
	Character counts



	pA, pB, …
	Character frequencies






	Parameters

	alphabet (string) – List of characters in alphabet






	
addProperties(other)

	add properties.






	
loadSequence(sequence, seqtype='na')

	load sequence properties from a sequence.










	
class SequenceProperties.SequencePropertiesEntropy(alphabet, pseudocounts=0)

	Bases: SequenceProperties.SequencePropertiesCounts

Add properties : Entropy of a sequence


	entropy
	Entropy of the sequence






	Parameters

	
	alphabet (string) – List of characters in alphabet


	pseudocounts (int [https://docs.python.org/2.7/library/functions.html#int]) – Pseudo-counts to add









	
addProperties(other)

	add properties.






	
getEntropy(usage=None)

	return entropy of a source in terms of a reference usage.

Also called conditional entropy or encoding cost.













            

          

      

      

    

  

  
    
    

    Variants.py -
    

    

    

    
 
  

    
      
          
            
  
Variants.py -


	Tags

	Python






Code


	
class Variants.Variant(pos, reference, genotype)

	Bases: tuple

Create new instance of Variant(pos, reference, genotype)


	
property genotype

	Alias for field number 2






	
property pos

	Alias for field number 0






	
property reference

	Alias for field number 1










	
Variants.ExtendedVariant

	alias of Variants.Variant






	
Variants.updateVariants(variants, lcontig, strand, phased=True)

	update variants such that they use same coordinate
system (and strand) as the transcript

fixes 1-ness of variants






	
Variants.mergeVariants(variants)

	merge overlapping variants.

Overlapping variants occur if there are two deletions
at the same location:


WT      ACTG
Allele1 -CT-
Allele2 —-




This will be encoded by samtools as (0-based coordinates):

0 * -A/ACTG
3 * -G/-G





This upsets the re-constitution algoritm.

This method separates these two variants into two non-overlapping
variants making use of variable length deletions.


0 * -A/-A
1 * —G/-CTG




Another case:


WT      ACTG
Allele1 ACT-
Allele2 —-




This will be encoded by samtools as (0-based coordinates):

0 * */-ACTG
3 * -G/*





This method separates these two as:

0 * */-ACT
3 * -G/-G










	
Variants.indexVariants(variants)

	build index of variants for ranged retrieval.






	
Variants.buildAlleles(sequence, variants, reference_start=0, phased=True)

	build alleles for sequence adding variants.

Variants are assumed to be in 0-based coordinates on the same strand as the sequence.
reference_start is the position of the first base of sequence. Set to 0, if
the positions in variants are relative to sequence.






	
Variants.buildOffsets(variants, phased=True, contig=None)

	collect coordinate offsets.

This methods takes a set of variants and computes
coordinates offsets based on indels.

Conflicting variants will be removed.

Returns a list of variants, a list of removed variants and a list of offsets.









            

          

      

      

    

  

  
    
    

    WrapperCodeML.py -
    

    

    

    
 
  

    
      
          
            
  
WrapperCodeML.py -


	Tags

	Python






Code


	
exception WrapperCodeML.Error

	Bases: Exception

Base class for exceptions in this module.






	
exception WrapperCodeML.ParsingError(message, line=None)

	Bases: WrapperCodeML.Error

Exception raised for errors while parsing


	
message -- explanation of the error

	








	
exception WrapperCodeML.UsageError(message)

	Bases: WrapperCodeML.Error

Exception raised for errors while starting


	
message -- explanation of the error

	








	
class WrapperCodeML.CodeMLBranchInfo(branch1, branch2, kaks, ka, ks, ndn, sds, n, s)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

result with branch information.






	
class WrapperCodeML.BaseMLResult

	Bases: WrapperCodeML.CodeMLResult

result object for BaseML.






	
class WrapperCodeML.CodeMLResultSites(num_sequences, model)

	Bases: WrapperCodeML.CodeMLResult

result with site specific information.






	
class WrapperCodeML.CodeMLResultPairs

	Bases: WrapperCodeML.CodeMLResult

results for a pairwise codeml run.


	
fromResult(result)

	build pairwise results from tree.










	
class WrapperCodeML.CodeMLResultPair

	Bases: WrapperCodeML.CodeMLResult

results for a pairwise comparison.






	
class WrapperCodeML.CodeMLAncestralSequence(sequence, accuracy_per_site, accuracy_per_sequence)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

an ancestral sequence.






	
class WrapperCodeML.CodeML

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
GetOptions()

	return options in pretty format






	
AddOptions(parser)

	add options to an OptionParser object.






	
SetOptions(options)

	set options from the command line.






	
WriteAlignment(mali)

	write alignment in Phylip format.






	
WriteTree(tree)

	write tree to file. The root of the tree is removed.






	
writeControlFile(outfile, filename_sequences='input', filename_output='output', filename_tree=None, options={})

	write a codeml.ctl file into outfile.






	
parseRst(inlines, result)

	parse lines from rst file.






	
checkSection(lines, section_start)

	check if section starts with string section_start.






	
getSection(lines, *args)

	check if section starts with string section_start.






	
parseLog(lines_log, result)

	parse log output.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse CodeML output. This is rather tricky, as paml output is as
freeformat as it can get.  Also, there is a log file and an
output file. Proceed sequentially through file.










	
class WrapperCodeML.CodeMLSites

	Bases: WrapperCodeML.CodeML


	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse codeml output for site-specific analysis.






	
parseGrids(lines, result)

	parse grid information.






	
parseSites(lines, result)

	parse site specific model results.










	
class WrapperCodeML.CodeMLPairwise

	Bases: WrapperCodeML.CodeML


	
parseLog(lines_log, result)

	parse log output.

This routine collects the rho values for each pair.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse codeml output for pairwise rate calculation.






	
parsePairs(lines, result)

	parse pairwise results.










	
class WrapperCodeML.BaseML

	Bases: WrapperCodeML.CodeML


	
AddOptions(parser)

	add options to an OptionParser object.






	
SetOptions(options)

	set options from the command line.






	
parseOutput(lines, lines_log=None, rst_lines=None)

	parse BASEML output. This is rather tricky, as paml output is as
freeformat as it can get.  Also, there is a log file and an
output file. Proceed sequentially through file.






	
parseFrequencies(inlines, result)

	parse frequency section.










	
class WrapperCodeML.Evolver

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

interface class for running evolver.


	
writeControlFile(outfile)

	write control file to outfile.






	
fromMali(mali)

	compute codon table from a multiple alignment.






	
setUniformFrequencies()

	use uniform codon frequencies.






	
calculateScale(ds)

	calculate tree scale for a given dS value.

The branch scale is given by:

t = 3 dS * ps + 3 omega * dS * (1-ps)
t = 3 dS * (ps + omega (1 - ps )






	
setTree(tree)

	set tree.






	
run(ds=None, tree=None, test=False, dump=False)

	run evolver.










	
class WrapperCodeML.EvolverBaseml(*args, **kwargs)

	Bases: WrapperCodeML.Evolver

interface class for running evolver for nucleotides.


	
setUniformFrequencies()

	use uniform codon frequencies.






	
fromMali(mali)

	compute frequencies from a multiple alignment.






	
getParameters()

	get parameters for a model.

From the MCbase.dat:
Parameter kappa or rate parameters in the substituton model:
For TN93, two kappa values are required, while for REV, 5 values
(a,b,c,d,e) are required (see Yang 1994 for the definition of these
parameters).
The kappa parameter is defined differently under HKY85 (when k=1 means
no transition bias) and under F84 (when k=0 means no bias).
JC69 and F81 are considered species cases of HKY85, so use 1 for kappa
for those two models.  Notation is from my two papers in JME in 1994.






	
writeControlFile(outfile)

	write control file to outfile.










	
WrapperCodeML.getOptions(options)

	translate command line options to PAML options.






	
WrapperCodeML.runEvolver(options)

	run evolver.









            

          

      

      

    

  

  
    
    

    IGV.py - Simple wrapper to the IGV socket interface
    

    

    

    
 
  

    
      
          
            
  
IGV.py - Simple wrapper to the IGV socket interface


	Tags

	Python





This code was written by Brent Pedersen.

Downloaded from https://github.com/brentp/bio-playground/blob/master/igv/igv.py
on Nov.30 2011.


	
IGV.startIGV(command='igv.sh', port=None)

	start IGV on a specific port.






	
class IGV.IGV(host='127.0.0.1', port=60151, snapshot_dir='/tmp/igv')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Simple wrapper to the IGV (http://www.broadinstitute.org/software/igv/home)
socket interface (http://www.broadinstitute.org/software/igv/PortCommands)

requires:



	
	you have IGV running on your machine (launch with webstart here:
	http://www.broadinstitute.org/software/igv/download)







	
	you have enabled port communication in
	View -> Preferences… -> Advanced












Successful commands return ‘OK’

example usage:

>>> igv = IGV()
>>> igv.genome('hg19')
'OK'





>>> igv.load('http://www.broadinstitute.org/igvdata/1KG/pilot2Bams/NA12878.SLX.bam')
'OK'
>>> igv.go('chr1:45,600-45,800')
'OK'






	#save as svg, png, or jpg
	>>> igv.save('/tmp/r/region.svg')
'OK'
>>> igv.save('/tmp/r/region.png')
'OK'







	# go to a gene name.
	>>> igv.go('muc5b')
'OK'
>>> igv.sort()
'OK'
>>> igv.save('muc5b.png')
'OK'







	# get a list of commands that will work as an IGV batch script.
	>>> print "\n".join(igv.commands)
snapshotDirectory /tmp/igv
genome hg19
goto chr1:45,600-45,800
snapshotDirectory /tmp/r
snapshot region.svg
snapshot region.png
goto muc5b
sort base
snapshot muc5b.png









Note, there will be some delay as the browser has to load the annotations
at each step.


	
sort(option='base')

	options is one of: base, position, strand, quality, sample, and
readGroup.












            

          

      

      

    

  

  
    
    

    Masker.py - Wrapper for sequence masking tools
    

    

    

    
 
  

    
      
          
            
  
Masker.py - Wrapper for sequence masking tools


	Tags

	Python






Code


	
class Masker.Masker

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a masker preserves gaps, but it does not preserve
whitespace characters.


	
getAlphabet(sequence)

	get sequence type (aa,na,codons).






	
maskSequence(peptide_sequence)

	mask peptide sequence






	
maskSequences(sequences)

	mask a collection of sequences.










	
class Masker.MaskerBias

	Bases: Masker.Masker






	
class Masker.MaskerSeg

	Bases: Masker.Masker






	
class Masker.MaskerDustMasker

	Bases: Masker.Masker

use dustmasker. masked chars are returned as
lower case characters.






	
class Masker.MaskerRandom(proportion=10, *args, **kwargs)

	Bases: Masker.Masker

randomly mask a proportion of positions in a sequence
in multiple alignment.






	
Masker.maskSequences(sequences, masker=None)

	return a list of masked sequence.


	masker can be one of
	dust/dustmasker * run dustmasker on sequences
softmask        * use softmask to hardmask sequences













            

          

      

      

    

  

  
    
    

    Histogram.py - Various functions to deal with histograms
    

    

    

    
 
  

    
      
          
            
  
Histogram.py - Various functions to deal with histograms


	Author

	


	Tags

	Python





Histograms can be calculated from a list/tuple/array of
values. The histogram returned is then a list of tuples
of the format [(bin1,value1), (bin2,value2), …].


	
Histogram.CalculateFromTable(dbhandle, field_name, from_statement, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None)

	get a histogram using an SQL-statement.
Intervals can be either supplied directly or are build
from the data by providing the number of bins and optionally
a minimum or maximum value.

If no number of bins are provided, the bin-size is 1.

This command uses the INTERVAL command from MYSQL, i.e. a bin value
determines the upper boundary of a bin.






	
Histogram.CalculateConst(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None)

	calculate a histogram based on a list or tuple of values.






	
Histogram.Calculate(values, num_bins=None, min_value=None, max_value=None, intervals=None, increment=None, combine=None, no_empty_bins=0, dynamic_bins=False, ignore_out_of_range=True)

	calculate a histogram based on a list or tuple of values.

use scipy for calculation.






	
Histogram.Scale(h, scale=1.0)

	rescale bins in histogram.






	
Histogram.convert(h, i, no_empty_bins=0)

	add bins to histogram.






	
Histogram.Combine(source_histograms, missing_value=0)

	combine a list of histograms
Each histogram is a sorted list of bins and counts.
The counts can be tuples.






	
Histogram.Print(h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	format
	0 = print histogram in several lines
1 = print histogram on single line










	
Histogram.Write(outfile, h, intervalls=None, format=0, nonull=None, format_value=None, format_bin=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	Parameters

	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line










	
Histogram.Fill(h)

	fill every empty value in histogram with
previous value.






	
Histogram.Add(h1, h2)

	adds values of histogram h1 and h2 and
returns a new histogram






	
Histogram.SmoothWrap(histogram, window_size)

	smooth histogram by sliding window-method, where
the window is wrapped around the borders. The sum of
all values is entered at center of window.






	
Histogram.PrintAscii(histogram, step_size=1)

	print histogram ascii-style.






	
Histogram.Count(data)

	count categorized data. Returns a list
of tuples with (count, token).






	
Histogram.Accumulate(h, num_bins=2, direction=1)

	add successive counts in histogram.
Bins are labelled by group average.






	
Histogram.Cumulate(h, direction=1)

	calculate cumulative distribution.






	
Histogram.AddRelativeAndCumulativeDistributions(h)

	adds relative and cumulative percents to a histogram.






	
Histogram.histogram(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first.
Ex: vals = [100, 110, 160, 200, 160, 110, 200, 200, 220]
histogram(vals) ==> [(100, 1), (110, 2), (160, 2), (200, 3), (220, 1)]
histogram(vals, 1) ==> [(200, 3), (160, 2), (110, 2), (100, 1), (220, 1)]
histogram(vals, 1, lambda v: round(v, -2)) ==> [(200.0, 6), (100.0, 3)]






	
Histogram.cumulate(histogram)

	cumulate histogram in place.

histogram is list of (bin, value) or (bin, (values,) )






	
Histogram.normalize(histogram)

	normalize histogram in place.

histogram is list of (bin, value) or (bin, (values,) )






	
Histogram.fill(iterator, bins)

	fill a histogram from bins.

The values are given by an iterator so that the histogram
can be built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins.  Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array.  The last range is given by
bins[N] <= range_N < infinity.  Values less than bins[0] are
not included in the histogram.


	Parameters

	
	-- The iterator. (iterator) – 


	-- 1D array.  Defines the ranges of values to use during (bins) – 


	histogramming. – 








Returns:
1D array.  Each value represents the occurences for a given
bin (range) of values.






	
Histogram.fillHistograms(infile, columns, bins)

	fill several histograms from several columns in a file.

The histograms are built on the fly.

Description:

Count the number of times values from array a fall into
numerical ranges defined by bins.  Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array.  The last range is given by
bins[N] <= range_N < infinity.  Values less than bins[0] are
not included in the histogram.


	Parameters

	
	-- The input file. (file) – 


	-- columns to use (columns) – 


	-- a list of 1D arrays.  Defines the ranges of values to use during (bins) – 


	histogramming. – 








Returns:
a list of 1D arrays.  Each value represents the occurences for a given
bin (range) of values.

WARNING: missing value in columns are ignored








            

          

      

      

    

  

  
    
    

    Histogram2D.py - functions for handling two-dimensional histograms.
    

    

    

    
 
  

    
      
          
            
  
Histogram2D.py - functions for handling two-dimensional histograms.


	Tags

	Python






	
Histogram2D.Calculate(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.

If bin_function is given, map it over values first.






	
Histogram2D.Print(h, bin_function=None)

	print a histogram.

A histogram can either be a list/tuple of values or
a list/tuple of lists/tuples where the first value contains
the bin and second contains the values (which can again be
a list/tuple).


	Parameters

	format – output format.
0 = print histogram in several lines,
1 = print histogram on single line












            

          

      

      

    

  

  
    
    

    Stats.py - statistical utility functions
    

    

    

    
 
  

    
      
          
            
  
Stats.py - statistical utility functions


	Tags

	Python






Code


	
Stats.getSignificance(pvalue, thresholds=[0.05, 0.01, 0.001])

	return cartoon of significance of a p-Value.






	
class Stats.Result

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

allow both member and dictionary access.






	
Stats.doLogLikelihoodTest(complex_ll, complex_np, simple_ll, simple_np, significance_threshold=0.05)

	perform log-likelihood test between model1 and model2.






	
Stats.doBinomialTest(p, sample_size, observed, significance_threshold=0.05)

	perform a binomial test.

Given are p: the probability of the NULL hypothesis, the sample_size
and the number of observed counts.






	
Stats.doChiSquaredTest(matrix, significance_threshold=0.05)

	perform chi-squared test on a matrix.

The observed/expected values are in rows, the categories are in
columns, for example:









	set

	protein_coding

	intronic

	intergenic



	observed

	92

	90

	194



	expected

	91

	10

	15






If there are only two categories (one degrees of freedom) the
Yates correction is applied.  For each entry (observed-expected),
the value 0.5 is subtracted ignoring the sign of the difference.

The test throws an exception if

1. one or more expected categories are less than 1 (it does not
matter what the observed values are)


	more than one-fifth of expected categories are less than 5









	
Stats.doPearsonChiSquaredTest(p, sample_size, observed, significance_threshold=0.05)

	perform a pearson chi squared test.

Given are p: the probability of the NULL hypothesis, the sample_size
and the number of observed counts.

For large sample sizes, this test is a continuous approximation to
the binomial test.






	
class Stats.DistributionalParameters(values=None, format='%6.4f', mode='float')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a collection of distributional parameters. Available properties
are:

mMean, mMedian, mMin, mMax, mSampleStd, mSum, mCounts

This method is deprecated - use Summary instead.


	
updateProperties(values)

	update properties.

If values is an vector of strings, each entry will be converted
to float. Entries that can not be converted are ignored.






	
getZScore(value)

	return zscore for value.






	
setFormat(format)

	set number format.






	
getHeaders()

	returns header of column separated values.






	
getHeader()

	returns header of column separated values.










	
class Stats.Summary(values=None, format='%6.4f', mode='float', allow_empty=True)

	Bases: Stats.Result

a collection of distributional parameters. Available properties
are:

mean, median, min, max, samplestd, sum, counts


	
getHeaders()

	returns header of column separated values.






	
getHeader()

	returns header of column separated values.










	
Stats.doFDRPython(pvalues, vlambda=None, pi0_method='smoother', fdr_level=None, robust=False, smooth_df=3, smooth_log_pi0=False, pi0=None, plot=False)

	modeled after code taken from
http://genomics.princeton.edu/storeylab/qvalue/linux.html.

I did not like the error handling so I translated most to python.

Compute FDR after method by Storey et al. (2002).






	
class Stats.CorrelationTest(s_result=None, method=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

coefficient is r, not r squared






	
Stats.filterMasked(xvals, yvals, missing=('na', 'Nan', None, ''), dtype=<class 'float'>)

	convert xvals and yvals to numpy array skipping pairs with
one or more missing values.






	
Stats.doCorrelationTest(xvals, yvals)

	compute correlation between x and y.

Raises a value-error if there are not enough observations.






	
Stats.getPooledVariance(data)

	return pooled variance from a
list of tuples (sample_size, variance).






	
Stats.computeROC(values)

	return a roc curve for values. Values
is a sorted list of (value, bool) pairs.

Deprecated - use getPerformance instead

returns a list of (FPR,TPR) tuples.






	
class Stats.PairedTTest(statistic, pvalue)

	Bases: tuple

Create new instance of PairedTTest(statistic, pvalue)


	
property pvalue

	Alias for field number 1






	
property statistic

	Alias for field number 0










	
Stats.doPairedTTest(vals1, vals2)

	perform paired t-test.

vals1 and vals2 need to contain the same number of elements.






	
Stats.doWelchsTTest(n1, mean1, std1, n2, mean2, std2, alpha=0.05)

	Welch’’s approximate t-test for the difference of two means of
heteroscedasctic populations.

This functions does a two-tailed test.

see PMID: 12016052


	Parameters

	
	n1int
	number of variates in sample 1



	n2int
	number of variates in sample 2



	mean1float
	mean of sample 1



	mean2float
	mean of sample 2



	std1float
	standard deviation of sample 1



	std2float
	standard deviation of sample 2









returns a WelchTTest






	
Stats.getAreaUnderCurve(xvalues, yvalues)

	compute area under curve from a set of discrete x,y coordinates
using trapezoids.

This is only as accurate as the density of points.






	
Stats.getSensitivityRecall(values)

	return sensitivity/selectivity.

Values is a sorted list of (value, bool) pairs.

Deprecated - use getPerformance instead






	
class Stats.ROCResult(value, pred, tp, fp, tn, fn, tpr, fpr, tnr, fnr, rtpr, rfnr)

	Bases: tuple

Create new instance of ROCResult(value, pred, tp, fp, tn, fn, tpr, fpr, tnr, fnr, rtpr, rfnr)


	
property fn

	Alias for field number 5






	
property fnr

	Alias for field number 9






	
property fp

	Alias for field number 3






	
property fpr

	Alias for field number 7






	
property pred

	Alias for field number 1






	
property rfnr

	Alias for field number 11






	
property rtpr

	Alias for field number 10






	
property tn

	Alias for field number 4






	
property tnr

	Alias for field number 8






	
property tp

	Alias for field number 2






	
property tpr

	Alias for field number 6






	
property value

	Alias for field number 0










	
Stats.getPerformance(values, skip_redundant=True, false_negatives=False, bin_by_value=True, monotonous=False, multiple=False, increasing=True, total_positives=None, total_false_negatives=None)

	compute performance estimates for a list of (score, flag)
tuples in values.

Values is a sorted list of (value, bool) pairs.

If the option false-negative is set, the input is +/- or 1/0 for
a true positive or false negative, respectively.

TP: true positives
FP: false positives
TPR: true positive rate  = true_positives /  predicted
P: predicted
FPR: false positive rate = false positives  / predicted
value: value






	
Stats.doMannWhitneyUTest(xvals, yvals)

	apply the Mann-Whitney U test to test for the difference of medians.






	
Stats.adjustPValues(pvalues, method='fdr', n=None)

	returns an array of adjusted pvalues

Reimplementation of p.adjust in the R package.

p: numeric vector of p-values (possibly with ‘NA’s).  Any other
R is coerced by ‘as.numeric’.

method: correction method. Valid values are:

n: number of comparisons, must be at least ‘length(p)’; only set
this (to non-default) when you know what you are doing

For more information, see the documentation of the
p.adjust method in R.






	
Stats.savitzky_golay(y, window_size, order, deriv=0, rate=1)

	Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.


	Parameters

	
	y (array_like, shape (N,)) – the values of the time history of the signal.


	window_size (int [https://docs.python.org/2.7/library/functions.html#int]) – the length of the window. Must be an odd integer number.


	order (int [https://docs.python.org/2.7/library/functions.html#int]) – the order of the polynomial used in the filtering.
Must be less then window_size - 1.


	deriv (int [https://docs.python.org/2.7/library/functions.html#int]) – the order of the derivative to compute (default = 0 means only
smoothing)






	Returns

	ys – the smoothed signal (or it’s n-th derivative).



	Return type

	ndarray, shape (N)





Notes

The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.

Examples

t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label=’Noisy signal’)
plt.plot(t, np.exp(-t**2), ‘k’, lw=1.5, label=’Original signal’)
plt.plot(t, ysg, ‘r’, label=’Filtered signal’)
plt.legend()
plt.show()

References


	1

	A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.



	2

	Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688













            

          

      

      

    

  

  
    
    

    MatrixTools.py -
    

    

    

    
 
  

    
      
          
            
  
MatrixTools.py -


	Tags

	Python






Code


	
MatrixTools.addOptions(parser)

	add matrices to option parser.






	
MatrixTools.getMatrixFromEdges(lines, options, in_map_token2row={}, in_map_token2col={})

	read matrix from lines






	
MatrixTools.buildMatrixFromLists(lists, dtype=<class 'float'>, default=None)

	build a matrix from a list of lists.

Each list is a list of tuples (row, value).
The columns are given by order of the lists.

Returns matrix, row_headers






	
MatrixTools.buildMatrixFromTables(infiles, column, column_header=0, dtype=<class 'float'>, default=None)

	build a matrix from a column called column in a series of input files.

If column_value is None, the first column is taken as the name of the row.

The columns are given by order of the input files.

returns matrix, row_headers






	
MatrixTools.buildMatrixFromEdges(edges, in_map_token2row={}, in_map_token2col={}, is_symmetric=False, missing_value=0, diagonal_value=0, dtype=<class 'int'>)

	build a matrix from an edge-list representation.

For example, the following list of tuples:

[('A', 'B', 1),
 ('A', 'C', 2),
 ('B', 'C', 3)]





will be converted to the following matrix:

  A B C
A   1 2
B     3
C





If is_symmetric is set to True, the matrix is assumed to be
symmetric and missing values will automatically be filled:

  A B C
A   1 2
B 1   3
C 2 3





If edge list may contain four elements, in which case the
fourth element is expected to be the value of the lower
diagonal in a symmetric matrix:

[('A', 'B', 1, 4),
 ('A', 'C', 2, 5),
 ('B', 'C', 3, 6)]





will yield:

  A B C
A   1 2
B 4   3
C 5 6





returns a numpy matrix and lists of row and column names.









            

          

      

      

    

  

  
    
    

    Iterators.py - Iterator functions
    

    

    

    
 
  

    
      
          
            
  
Iterators.py - Iterator functions

A collection of general purpose iterators.


	
Iterators.sample(iterable, sample_size=None)

	sample # copies from iterator without replacement.

Stores a temporary copy of the items in iterable. The function has
thus a possibly high memory footprint and long pre-processing time
to yield the first element.

If sample_size is not given, the iterator returns elements in
random order (see random.shuffle())


Note

This snippet was downloaded from an unknown source.








	
Iterators.group_by_distance(iterable, distance=1)

	group integers into non-overlapping intervals that
are at most distance apart.

>>> list( group_by_distance( (1,1,2,4,5,7) ) )
[(1, 3), (4, 6), (7, 8)]





>>> list( group_by_distance( [] ) )
[]





>>> list( group_by_distance( [3] ) )
[(3, 4)]





>>> list( group_by_distance( [3,2] ) )
Traceback (most recent call last):
...
ValueError: iterable is not sorted: 2 < 3






Note

This snippet was downloaded from an unknown source.










            

          

      

      

    

  

  
    
    

    SetTools.py - Tools for working on sets
    

    

    

    
 
  

    
      
          
            
  
SetTools.py - Tools for working on sets

Some of the functions in this module precede the set [https://docs.python.org/2.7/library/stdtypes.html#set]
datatype in python.


Reference


	
SetTools.combinations(list_of_sets)

	create all combinations of a list of sets

>>> combinations([set((1,2)), set((2,3))])
[((0,), set([1, 2]), set([1, 2])), ((1,), set([2, 3]), set([2, 3]))]
>>> combinations([set((1,2)), set((2,3)), set((3,4))])
[((0,), set([1, 2]), set([1, 2])), ((1,), set([2, 3]), set([2, 3])), ((2,), set([3, 4]), set([3, 4])), ((0, 1), set([1, 2, 3]), set([2])), ((0, 2), set([1, 2, 3, 4]), set([])), ((1, 2), set([2, 3, 4]), set([3]))]






	Returns

	result – The resut is a list of tuples containing (set_composition, union,
intersection)



	Return type

	list










	
SetTools.writeSets(outfile, list_of_sets, labels=None)

	output a list of sets as a tab-separated file.

This method build a list of all items contained across all sets
and outputs a matrix of 0’s and 1’s denoting set membership. The
items are in the table rows and the sets are in the table columns.


	Parameters

	
	outfile (File) – File to write to


	list_of_sets (list) – The list of sets to output


	labels (list) – List of labels(column names)













	
SetTools.unionIntersectionMatrix(list_of_sets)

	build union and intersection matrix of a list of sets.

>>> unionIntersectionMatrix([set((1,2)), set((2,3))])
array([[0, 1],
       [3, 0]])
>>> unionIntersectionMatrix([set((1,2)), set((2,3)), set((3,4))])
array([[0, 1, 0],
       [3, 0, 1],
       [4, 3, 0]])






	Parameters

	list_of_sets (list) – The list of sets to work with.



	Returns

	matrix – The matrix is a list of lists. The upper diagonal of the
matrix contains the size of the union of two sets and the
lower diagonal the intersection of two sets.



	Return type

	numpy.matrix










	
SetTools.getAllCombinations(*sets)

	generate all combination of elements from a collection of sets.

This method is derived from a python recipe by Zoran Isailovski:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/410685

>>> getAllCombinations(set((1,2)), set((2,3)), set((3,4)))
[(1, 2, 3), (1, 2, 4), (1, 3, 3), (1, 3, 4), (2, 2, 3), (2, 2, 4), (2, 3, 3), (2, 3, 4)]










	
SetTools.xuniqueCombinations(items, n)

	Return a list of unique combinations of items in list.

>>> list(xuniqueCombinations([1, 2, 3], 1))
[[1], [2], [3]]
>>> list(xuniqueCombinations([1, 2, 3], 2))
[[1, 2], [1, 3], [2, 3]]
>>> list(xuniqueCombinations([1, 2, 3], 3))
[[1, 2, 3]]










	
SetTools.compareLists(list1, list2)

	returns the union and the disjoint members of two lists.


Note

Deprecated
Use python sets instead.




	Returns

	
	unique1 (set) – Elements unique in set1


	unique2 (set) – Elements unique in set2


	common (set) – Elements in both lists.


















            

          

      

      

    

  

  
    
    

    Tree.py - A phylogenetic tree
    

    

    

    
 
  

    
      
          
            
  
Tree.py - A phylogenetic tree

The Tree is derived from the class from Bio.Nexus.Trees.Tree
adding some additional functionality.


Reference


	
Tree.updateNexus(nexus)

	change trees in a nexus object (see Biopython_) to Tree.






	
Tree.Nop(x)

	empty function for tree traversal






	
class Tree.Tree(*args, **kwargs)

	Bases: Bio.Nexus.Trees.Tree

A phylogenetic tree.

This class represents a tree using a chain of nodes with on
predecessor (=ancestor) and multiple successors (=subclades).

Ntree(self,tree).


	
root_at_node(node, distance=0)

	root tree at node.


	Parameters

	
	node – New root


	distance (float [https://docs.python.org/2.7/library/functions.html#float]) – Distance of node to new root.


	is a subset of the code taken from root_with_outgroup. (This) – 













	
to_string(support_as_branchlengths=False, branchlengths_only=False, plain=True, write_all_taxa=False, branchlength_format='%1.5f', support_format='%1.2f', format='nexus')

	Return a paup compatible tree line.


	Parameters

	
	support_as_branchlengths (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, output bootstrap support value as branch lengths.


	branchlengths_only (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Only output branchlengths, no support values


	plain (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Output plain tree (no branch lengths/support values).


	write_all_taxa (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, internal node names are output


	branchlength_format (string) – Format to use for branch lengths


	support_format (string) – Format to use for bootstrap support values


	format (string) – Either nexus on NHX.






	Returns

	tree – A PAUP compatible tree line.



	Return type

	string










	
get_nodes(node_id)

	Return a list of nodes downwards from a node (self, node_id).

The list includes the given node_id.






	
get_leaves(node_id)

	Return a list of leaf nodes downward from a node (self, node_id).






	
root_midpoint()

	perform midpoint rooting of tree.

The root is placed at equal distance to the two leaves
furthest apart in the tree (centroid of the tree).






	
getNumLeaves()

	return list with number of leaves beyond each node






	
root_balanced()

	perform balanced rooting of tree.

The root is placed such that the number of leaves
on either side of the tree is equal (or at most
different by 1).






	
dfs(node_id, pre_function=<function Nop>, descend_condition=<function Nop>, post_function=<function Nop>)

	dfs tree tree traversal starting at node_id.

Apply functions pre_function at first and
post_function at last visit of a node.






	
writeToFile(outfile, with_branchlengths=True, format='nh')

	write a tree to a file.






	
truncate(node_id, taxon=None, keep_node=None)

	truncate tree at node_id.

This function will not change any branch lengths.
If keep is given, single child nodes will be collapsed
until keep_node is reached.






	
relabel(map_old2new, warn=False)

	relabel taxa in tree using the provided mapping.






	
rescaleBranchLengths(value)

	rescale branch length so that they sum up to value.













            

          

      

      

    

  

  
    
    

    TreeTools.py - Tools for working with trees
    

    

    

    
 
  

    
      
          
            
  
TreeTools.py - Tools for working with trees

This module contains functions to work with gene and/or species trees.


Reference


	
TreeTools.Newick2Nexus(infile)

	convert newick formatted tree(s) into a nexus object.

Multiple trees are separated by a semicolon. Tree names can
be given by fasta-style separators, i.e., lines starting with
‘>’.

If the token [&&NHX is found in the tree, it is assumed to be
output from njtree and support values are added. Support values are
added in the format taxon:support:branchlength


	Parameters

	infile (object [https://docs.python.org/2.7/library/functions.html#object]) – Input data. Can be a file, a list of lines or a single line.



	Returns

	nexus



	Return type

	Bio.Nexus.Nexus










	
TreeTools.Nexus2Newick(nexus, with_branchlengths=True, with_names=False, write_all_taxa=False)

	convert nexus tree format to newick format.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to output


	with_branch_lengths (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, output branchlengths.


	with_names (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If True, add node names.


	write_all_taxa (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Ouput taxa for internal nodes.






	Returns

	output – Trees in Newick format.



	Return type

	string










	
TreeTools.Tree2Newick(tree, with_branch_lengths=True, write_all_taxa=False)

	convert tree to newick format.






	
TreeTools.Newick2Tree(txt)

	convert tree to nexus format.






	
TreeTools.WriteNexus(nexus, **kwargs)

	write trees in nexus file format.






	
TreeTools.GetTaxa(tree)

	retrieve all taxa of leaves in a tree.






	
TreeTools.GetTaxonomicNames(tree)

	get list of taxa.






	
TreeTools.MapTaxa(tree, map_old2new, remove_unknown=False)

	update taxa in tree to new taxa.


	Parameters

	
	tree (Tree) – The tree to update.


	map_old2new (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping old taxa to new taxa.


	remove_unknown (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If true, taxa not in map_old2new will be removed.













	
TreeTools.Branchlength2Support(tree)

	copy values stored as branchlength to into support

The branchlength property is not changed.

This step is necessary when support has been stored as branchlength
(e.g. paup), and has thus been read in as branchlength.






	
TreeTools.Species2Genes(nexus, map_species2genes)

	convert a species tree to a gene tree.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to work on


	map_species2genes (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping species names to gene names













	
TreeTools.Genes2Species(nexus, map_gene2species)

	convert a gene tree into a species tree.


	Parameters

	
	nexus (Bio.Nexus.Nexus) – The trees to work on


	map_gene2species (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping gene names to species names













	
TreeTools.BuildMapSpecies2Genes(genes, pattern_species='^([^|]+)[|]')

	build a map of species to genes

This method assumes that gene names contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	genes (list) – List of genes


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	
	map_species2genes (dict) – Mapping between species to one or more genes


	map_gene2species (dict) – Mapping between a gene to the species















	
TreeTools.GetMonophyleticPairs(tree)

	build list of monophyletic pairs in tree.






	
TreeTools.GetTaxaForSpecies(tree, species, pattern_species='^([^|]+)[|]')

	get all taxa of a given species.

This method assumes that node labels contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	genes (list) – List of genes


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	taxa – List of taxa from this species.



	Return type

	list










	
TreeTools.IsMonophyleticForSpecies(tree, species, pattern_species='^([^|]+)[|]')

	check if a tree is monophyletic for a species.

This method assumes that node labels contain the species name and
it can be extracted via a regular expression.


	Parameters

	
	tree (Tree) – Tree to analyse


	species (string) – Species to check


	pattern_species (string) – Regular expression to extract species name from gene name.






	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
TreeTools.IsMonophyleticForTaxa(tree, taxa, support=None)

	check if a tree is monophyletic for a list of taxa.


	Parameters

	
	tree (Tree) – Tree to analyse


	taxa (list) – List of taxa


	support (float [https://docs.python.org/2.7/library/functions.html#float]) – Minimum bootstrap support






	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
TreeTools.GetLeaves(tree, node)

	Return leaves in tree below node.






	
TreeTools.IsSingleSpecies(tree, node, pattern_species='^([^|]+)[|]')

	True if taxa below node contain the same species.






	
TreeTools.Transcript2GeneTree(tree, map_transcript2gene, map_gene2transcripts)

	convert a transcript tree into a gene tree.

supply a map for mapping transcripts to genes.

The procedure for converting a transcript tree into a gene tree:

If there are two genes, and they are monophyletic, no matter how many
transcripts, the order is as follows:


1 Merge all nodes into two, one for each gene.


	2 The distance between the genes is the minimum distance observed between
	two transcripts from different genes. Half of this will be set as the
branch length from the gene leaves.








If this is not possible for a set of genes, the procedure will fail and not
return a gene tree.






	
TreeTools.MapTerminalTaxa(tree, mapping)

	map taxa in leaves in all trees.






	
TreeTools.GetCommonAncestor(tree, taxa)

	retrieve common ancestor for a list of taxa.

Reroot tree. Check if it is monopyletic. If it is, return root,
otherwise, return -1.






	
TreeTools.TreeDFS(tree, node_id, pre_function=<function Nop>, descend_condition=<function Nop>, post_function=<function Nop>)

	BFS tree tree traversal starting at node_id.

Apply functions pre_function at first and
post_function at last visit of a node.






	
TreeTools.GetMaxIndex(tree)

	get maximum node number.






	
TreeTools.GetBranchLengths(tree)

	return an array with minimum and maximum branch length.






	
TreeTools.Reroot(tree, taxa)

	reroot tree with taxa - the list of
taxa does not need to be monophyletic.






	
TreeTools.GetSubsets(tree, node=None, with_decoration=True)

	return subsets below a certain node including
their height (distance from leaves) and branchlength






	
TreeTools.CountBranchPoints(tree, taxa)

	count the number branch points together with their
distances for a given list of taxa.

return a list of branch points






	
TreeTools.IsCompatible(tree1, tree2)

	check if two trees are compatible.

note: this will delete support information.






	
TreeTools.Tree2Graph(tree)

	return tree as a list of edges in a graph.






	
TreeTools.Graph2Tree(links, label_ancestral_nodes=False)

	build tree from list of nodes.

Assumption is that links always point from parent to child.






	
TreeTools.GetAllNodes(tree)

	return all nodes in the tree.






	
TreeTools.GetDistancesBetweenTaxa(tree, taxa1, taxa2)

	get average branchlength between taxa1 and taxa2.






	
TreeTools.PruneTerminal(tree, taxon)

	Prunes a terminal taxon from the tree.

id_of_previous_node = prune(tree,taxon)
If taxon is from a bifurcation, the connecting node will be collapsed
and its branchlength added to remaining terminal node. This might be no
longer a meaningful value.

direct copy of Nexus.Trees.py - don’t know why have a separate method,
maybe there was a bug in Nexus.Trees.






	
TreeTools.GetSubtree(tree, node_id)

	return a copy of tree from node_id downwards.






	
TreeTools.Unroot(tree)

	unroot tree.






	
TreeTools.GetSize(tree)

	return the length of the tree. This is the maximum node_id + 1.

This quantity is useful for tree traversal while updating
a container.






	
TreeTools.PruneTree(tree, taxa, keep_distance_to_root=False)

	prune tree: keep only those taxa in list.






	
TreeTools.GetNodeMap(tree1, tree2)

	map nodes between tree1 and tree2.






	
TreeTools.ReconciliateByRio(gene_tree, species_tree, extract_species, extract_gene=None, outgroup_species=None, min_branch_length=0.0)

	Gene tree G and species tree S

If outgroup_species is given: trees will be cut of
as soon as one of the outgroup species is part of a subtree.
The corresponding node type will be out-paralog. Out-paralog
relationship is cast upwards.

Input trees are rooted and binary.

Output: gene tree with duplication/speciation assigned to each node.

Initialization:


Number nodes in S in pre-order traversal (root = 1), such
that child nodes are always larger than parent nodes.

For each external node g of G, set M(g) to the number of the
external node in S with the matching species name.




Recursion:


Visit each internal node g of G in post-order traversal, (i.e.
from leaves to root):

set a = M(g1) # g1 = first child of current node g
set b = M(g2) # g2 = second child of current node g

while a != b:
    if a > b:
          set a = parent of node a in species tree
    else:
          set b = parent of node b in species tree
set M(g) = a

if M(g) == M(g1) or M(g) == M(g2):
    g is duplication
else:
    g is speciation








The algorithm returns an array for each node with its type.

If extract_gene is given, the algorithm will label transcription nodes
for alternative transcripts (duplications involving the same gene).

The algorithm has been extended to accomodate the following test cases:


	Alternative transcripts
	Alternative transcripts that span genes from other species are permitted,
if at most one gene of the other species is involved.

To avoid over-counting of speciation events, the one subtree with the
least species is masked.





If the branch length of a node in the gene tree is shorter than min_branch_length,
the resultant node is masked, because the topology might be dodgy.






	
TreeTools.CountDuplications(gene_tree, species_tree, node_types, extract_species, extract_gene=None)

	count duplications.

given are gene and species tree and node types (duplication/speciation)

extract_species gives the species for an OTU in the gene tree

Extract_gene gives the gene for an OTU in the gene tree. If not given,
all transcripts are counted as unique.






	
TreeTools.GetParentNodeWhereTrue(node_id, tree, stop_function)

	walk up in gene tree and stop where stop_function is true.

The walk finishes at the root.

returns tuple of node and distance.






	
TreeTools.GetChildNodesWhereTrue(node_id, tree, stop_function)

	walk down in tree and stop where stop_function is true

The walk finishes at the leaves.

returns a list of tuples of nodes and distance.






	
TreeTools.GetDistanceToRoot(tree)

	return list with distance to root for each node.






	
TreeTools.traverseGraph(graph, start, block=[])

	traverse graph, go not passed nodes in block.






	
TreeTools.convertTree2Graph(tree)

	convert tree to a graph.






	
TreeTools.calculatePatternsFromTree(tree, sort_order)

	calculate patterns from a tree.









            

          

      

      

    

  

  
    
    

    RLE.py - a simple run length encoder
    

    

    

    
 
  

    
      
          
            
  
RLE.py - a simple run length encoder


	Tags

	Python





Taken from: http://rosettacode.org/wiki/Run-length_encoding#Python


	
RLE.encode(input_array)

	encode array or string.

return tuples of (count, value).

>>> encode(array.array( "i", (10,10,10,10,20,20,20,20) ) )
[(4, 10), (4, 20)]





>>> encode("aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa")
[(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')]










	
RLE.decode(lst, typecode)

	decode to array

>>> decode( [(4, 10), (4, 20)], typecode="i" )
array('i', [10, 10, 10, 10, 20, 20, 20, 20])





>>> decode( [(5, 'a'), (6, 'h'), (7, 'm'), (1, 'u'), (7, 'i'), (6, 'a')], typecode="c" )
array('c', 'aaaaahhhhhhmmmmmmmuiiiiiiiaaaaaa')










	
RLE.compress(input_string, bytes=1)

	return compressed stream.








            

          

      

      

    

  

  
    
    

    SVGdraw.py - generate SVG drawings
    

    

    

    
 
  

    
      
          
            
  
SVGdraw.py - generate SVG drawings


	Tags

	Python





This module has been copied from 3rd party resources.

SVGdraw uses an object model drawing and a method toXML to create SVG graphics
by using easy to use classes and methods usualy you start by creating a drawing eg


d=drawing()
#then you create a SVG root element
s=svg()
#then you add some elements eg a circle and add it to the svg root element
c=circle()
#you can supply attributes by using named arguments.
c=circle(fill=’red’,stroke=’blue’)
#or by updating the attributes attribute:
c.attributes[‘stroke-width’]=1
s.addElement(c)
#then you add the svg root element to the drawing
d.setSVG(s)
#and finaly you xmlify the drawing
d.toXml()




this results in the svg source of the drawing, which consists of a circle
on a white background. Its as easy as that;)
This module was created using the SVG specification of www.w3c.org and the
O’Reilly (www.oreilly.com) python books as information sources. A svg viewer
is available from www.adobe.com


	
class SVGdraw.pathdata(x=None, y=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

class used to create a pathdata object which can be used for a path.
although most methods are pretty straightforward it might be useful to look at the SVG specification.


	
closepath()

	ends the path






	
move(x, y)

	move to absolute






	
relmove(x, y)

	move to relative






	
line(x, y)

	line to absolute






	
relline(x, y)

	line to relative






	
hline(x)

	horizontal line to absolute






	
relhline(x)

	horizontal line to relative






	
vline(y)

	verical line to absolute






	
relvline(y)

	vertical line to relative






	
bezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy absolut






	
relbezier(x1, y1, x2, y2, x, y)

	bezier with xy1 and xy2 to xy relative






	
smbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy absolut






	
relsmbezier(x2, y2, x, y)

	smooth bezier with xy2 to xy relative






	
qbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy absolut






	
relqbezier(x1, y1, x, y)

	quadratic bezier with xy1 to xy relative






	
smqbezier(x, y)

	smooth quadratic bezier to xy absolut






	
relsmqbezier(x, y)

	smooth quadratic bezier to xy relative






	
ellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag  to xy absolut






	
relellarc(rx, ry, xrot, laf, sf, x, y)

	elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag  to xy relative










	
class SVGdraw.SVGelement(type, attributes, elements, text, namespace, **args)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Creates a arbitrary svg element and is intended to be subclassed not used on its own.
This element is the base of every svg element it defines a class which resembles
a xml-element. The main advantage of this kind of implementation is that you don’t
have to create a toXML method for every different graph object. Every element
consists of a type, attribute, optional subelements, optional text and an optional
namespace. Note the elements==None, if elements = None:self.elements=[] construction.
This is done because if you default to elements=[] every object has a reference
to the same empty list.


	
addElement(SVGelement)

	adds an element to a SVGelement

SVGelement.addElement(SVGelement)










	
class SVGdraw.tspan(text=None, **args)

	Bases: SVGdraw.SVGelement

ts=tspan(text=’’,**args)

a tspan element can be used for applying formatting to a textsection
usage:
ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
st=spannedtext()
st.addtspan(ts)
t=text(3,5,st)






	
class SVGdraw.tref(link, **args)

	Bases: SVGdraw.SVGelement

tr=tref(link=’’,**args)

a tref element can be used for referencing text by a link to its id.
usage:
tr=tref(‘#linktotext’)
st=spannedtext()
st.addtref(tr)
t=text(3,5,st)






	
class SVGdraw.spannedtext(textlist=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

st=spannedtext(textlist=[])

a spannedtext can be used for text which consists of text, tspan’s and tref’s
You can use it to add to a text element or path element. Don’t add it directly
to a svg or a group element.
usage:

ts=tspan(‘this text is bold’)
ts.attributes[‘font-weight’]=’bold’
tr=tref(‘#linktotext’)
tr.attributes[‘fill’]=’red’
st=spannedtext()
st.addtspan(ts)
st.addtref(tr)
st.addtext(‘This text is not bold’)
t=text(3,5,st)






	
class SVGdraw.rect(x=None, y=None, width=None, height=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

r=rect(width,height,x,y,fill,stroke,stroke_width,**args)

a rectangle is defined by a width and height and a xy pair






	
class SVGdraw.ellipse(cx=None, cy=None, rx=None, ry=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

e=ellipse(rx,ry,x,y,fill,stroke,stroke_width,**args)

an ellipse is defined as a center and a x and y radius.






	
class SVGdraw.circle(cx=None, cy=None, r=None, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

c=circle(x,y,radius,fill,stroke,stroke_width,**args)

The circle creates an element using a x, y and radius values eg






	
class SVGdraw.point(x, y, fill='black', **args)

	Bases: SVGdraw.circle

p=point(x,y,color)

A point is defined as a circle with a size 1 radius. It may be more efficient to use a
very small rectangle if you use many points because a circle is difficult to render.






	
class SVGdraw.line(x1=None, y1=None, x2=None, y2=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

l=line(x1,y1,x2,y2,stroke,stroke_width,**args)

A line is defined by a begin x,y pair and an end x,y pair






	
class SVGdraw.polyline(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],…],fill,stroke,stroke_width,**args)

a polyline is defined by a list of xy pairs






	
class SVGdraw.polygon(points, fill=None, stroke=None, stroke_width=None, **args)

	Bases: SVGdraw.SVGelement

pl=polyline([[x1,y1],[x2,y2],…],fill,stroke,stroke_width,**args)

a polygon is defined by a list of xy pairs






	
class SVGdraw.path(pathdata, fill=None, stroke=None, stroke_width=None, id=None, **args)

	Bases: SVGdraw.SVGelement

p=path(path,fill,stroke,stroke_width,**args)

a path is defined by a path object and optional width, stroke and fillcolor






	
class SVGdraw.text(x=None, y=None, text=None, font_size=None, font_family=None, text_anchor=None, font_style=None, **args)

	Bases: SVGdraw.SVGelement

t=text(x,y,text,font_size,font_family,**args)

a text element can bge used for displaying text on the screen






	
class SVGdraw.textpath(link, text=None, **args)

	Bases: SVGdraw.SVGelement

tp=textpath(text,link,**args)

a textpath places a text on a path which is referenced by a link.






	
class SVGdraw.pattern(x=None, y=None, width=None, height=None, patternUnits=None, **args)

	Bases: SVGdraw.SVGelement

p=pattern(x,y,width,height,patternUnits,**args)

A pattern is used to fill or stroke an object using a pre-defined
graphic object which can be replicated (“tiled”) at fixed intervals
in x and y to cover the areas to be painted.






	
class SVGdraw.title(text=None, **args)

	Bases: SVGdraw.SVGelement

t=title(text,**args)

a title is a text element. The text is displayed in the title bar
add at least one to the root svg element






	
class SVGdraw.description(text=None, **args)

	Bases: SVGdraw.SVGelement

d=description(text,**args)

a description can be added to any element and is used for a tooltip
Add this element before adding other elements.






	
class SVGdraw.lineargradient(x1=None, y1=None, x2=None, y2=None, id=None, **args)

	Bases: SVGdraw.SVGelement

lg=lineargradient(x1,y1,x2,y2,id,**args)

defines a lineargradient using two xy pairs.
stop elements van be added to define the gradient colors.






	
class SVGdraw.radialgradient(cx=None, cy=None, r=None, fx=None, fy=None, id=None, **args)

	Bases: SVGdraw.SVGelement

rg=radialgradient(cx,cy,r,fx,fy,id,**args)

defines a radial gradient using a outer circle which are defined by a cx,cy and r and by using a focalpoint.
stop elements van be added to define the gradient colors.






	
class SVGdraw.stop(offset, stop_color=None, **args)

	Bases: SVGdraw.SVGelement

st=stop(offset,stop_color,**args)

Puts a stop color at the specified radius






	
class SVGdraw.style(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

st=style(type,cdata=None,**args)

Add a CDATA element to this element for defing in line stylesheets etc..






	
class SVGdraw.image(url, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

im=image(url,width,height,x,y,**args)

adds an image to the drawing. Supported formats are .png, .jpg and .svg.






	
class SVGdraw.cursor(url, **args)

	Bases: SVGdraw.SVGelement

c=cursor(url,**args)

defines a custom cursor for a element or a drawing






	
class SVGdraw.marker(id=None, viewBox=None, refx=None, refy=None, markerWidth=None, markerHeight=None, **args)

	Bases: SVGdraw.SVGelement

m=marker(id,viewbox,refX,refY,markerWidth,markerHeight,**args)

defines a marker which can be used as an endpoint for a line or other pathtypes
add an element to it which should be used as a marker.






	
class SVGdraw.group(id=None, **args)

	Bases: SVGdraw.SVGelement

g=group(id,**args)

a group is defined by an id and is used to contain elements
g.addElement(SVGelement)






	
class SVGdraw.symbol(id=None, viewBox=None, **args)

	Bases: SVGdraw.SVGelement

sy=symbol(id,viewbox,**args)

defines a symbol which can be used on different places in your graph using
the use element. A symbol is not rendered but you can use ‘use’ elements to
display it by referencing its id.
sy.addElement(SVGelement)






	
class SVGdraw.defs(**args)

	Bases: SVGdraw.SVGelement

d=defs(**args)

container for defining elements






	
class SVGdraw.switch(**args)

	Bases: SVGdraw.SVGelement

sw=switch(**args)

Elements added to a switch element which are “switched” by the attributes
requiredFeatures, requiredExtensions and systemLanguage.
Refer to the SVG specification for details.






	
class SVGdraw.use(link, x=None, y=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

u=use(link,x,y,width,height,``**args``)

references a symbol by linking to its id and its position, height and width






	
class SVGdraw.link(link='', **args)

	Bases: SVGdraw.SVGelement

a=link(url,``**args``)

a link  is defined by a hyperlink. add elements which have to be linked
a.addElement(SVGelement)






	
class SVGdraw.view(id=None, **args)

	Bases: SVGdraw.SVGelement

v=view(id,``**args``)

a view can be used to create a view with different attributes






	
class SVGdraw.script(type, cdata=None, **args)

	Bases: SVGdraw.SVGelement

sc=script(type,type,cdata,``**args``)

adds a script element which contains CDATA to the SVG drawing






	
class SVGdraw.animate(attribute, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

an=animate(attribute,from,to,during,``**args``)

animates an attribute.






	
class SVGdraw.animateMotion(pathdata, dur, **args)

	Bases: SVGdraw.SVGelement

an=animateMotion(pathdata,dur,``**args``)

animates a SVGelement over the given path in dur seconds






	
class SVGdraw.animateTransform(type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

antr=animateTransform(type,from,to,dur,``**args``)

transform an element from and to a value.






	
class SVGdraw.animateColor(attribute, type=None, fr=None, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

ac=animateColor(attribute,type,from,to,dur,``**args``)

Animates the color of a element






	
class SVGdraw.set(attribute, to=None, dur=None, **args)

	Bases: SVGdraw.SVGelement

st=set(attribute,to,during,``**args``)

sets an attribute to a value for a






	
class SVGdraw.svg(viewBox=None, width=None, height=None, **args)

	Bases: SVGdraw.SVGelement

s=svg(viewbox,width,height,``**args``)

a svg or element is the root of a drawing add all elements to a svg element.
You can have different svg elements in one svg file
s.addElement(SVGelement)

eg
d=drawing()
s=svg((0,0,100,100),’100%’,’100%’)
c=circle(50,50,20)
s.addElement(c)
d.setSVG(s)
d.toXml()






	
class SVGdraw.drawing

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

d=drawing()

this is the actual SVG document. It needs a svg element as a root.
Use the addSVG method to set the svg to the root. Use the toXml method to write the SVG
source to the screen or to a file
d=drawing()
d.addSVG(svg)
d.toXml(optionalfilename)








            

          

      

      

    

  

  
    
    

    RateEstimation.py - utilities for computing rate estimates for codon models.
    

    

    

    
 
  

    
      
          
            
  
RateEstimation.py - utilities for computing rate estimates for codon models.


	Tags

	Python






	
RateEstimation.evaluateCodonPair(codon1, codon2)

	evaluate differences between codon pair.






	
RateEstimation.countSubstitutions(pi, Q)

	count substitituions given a matrix Q and frequencies pi.






	
RateEstimation.initializeQMatrix(codons)

	get an initialized Q matrix.






	
RateEstimation.getQMatrix(pi, Rsi, Rsv, Rni, Rnv)

	build a q matrix.

Diagonal elements are set to the negative of the row sums.
The matrix is normalized such that trace of the matrix is -1.






	
RateEstimation.getRateMatrix(trained_model, terminals=None)

	return a rate matrix from an xrate grammar.


	terminals: return rate matrix and frequencies for these
	terminals. If none are given, a dictionaries of
matrices and frequencies are returned.










	
RateEstimation.setFrequencies(model, mali, prefix='')

	set frequencies in a model according to those observed in data.

prefix: prefix for rate parameters.

Frequencies are labelled:
pa0, pc0, …, pa1, pc1, …, pa2, pc2, …






	
RateEstimation.getDistanceGTR(pi, matrix)

	obtain distance from a GTR model.
see Felsenstein 1994, pp 209








            

          

      

      

    

  

  
    
    

    Glossary
    

    

    

    
 
  

    
      
          
            
  
Glossary


File formats


	yaml
	Language to serialize objects. Used in the CGAT testing
framework. (YAML [http://en.wikipedia.org/wiki/YAML]).



	bam
	Format to store genomic alignments in a compressed format.
(BAM [http://samtools.sourceforge.net/]).



	bed
	File containing genomic intervals.
(BED [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]).



	vcf
	Variant call format [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41].



	gtf
	General transfer format [http://www.ensembl.org/info/website/upload/gff.html].
Format to store genes and transcripts.



	gff
	General feature format [http://www.ensembl.org/info/website/upload/gff.html].



	bigwig
	Compressed format for displaying numerical values across
genomic ranges (BIGWIG [https://genome.ucsc.edu/goldenPath/help/bigWig.html]).



	fasta
	Sequence format.



	wiggle
	Format for displaying numerical values across genomic
ranges (Wiggle [https://genome.ucsc.edu/goldenPath/help/wiggle.html]).



	psl
	Genomic alignment format. The format is described in detail
(PSL [https://genome.ucsc.edu/FAQ/FAQformat.html#format2].



	sam
	Format to store genomic alignments
(SAM [http://samtools.sourceforge.net/]).



	gdl
	gdl



	tsv
	Tab separated values. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

# This is a comment
gene_id       length
gene1 1000
gene2 2000
# Another comment







	svg
	pass



	edge list
	pass



	fastq
	Sequence format containing quality scores, more background is
here [http://en.wikipedia.org/wiki/FASTQ_format]



	sra
	sra



	axt
	axt



	agp
	AGP format [https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/]



	rdf
	Resource description framework [http://en.wikipedia.org/wiki/Resource_Description_Framework]







Other terms


	test directory
	Directory that contains the test.yaml, input and
reference files for testing scripts.



	experiment
	experiment



	replicate
	replicate



	graph
	graph



	track
	track



	graph
	graph



	submit host
	pass



	execution host
	pass



	edge list
	pass



	task
	pass



	sphinxreport
	sphinxreport



	query
	pass



	target
	pass



	code directory
	pass



	go
	pass



	goslim
	pass



	fastq
	pass



	tss
	Transcription start site



	production pipeline
	A pipeline that performs common tasks on a certain type of
data. The idea of a production pipeline is to provide common
preprocessing of data and a first look. A project
pipeline might then take data from one or more
production pipeline to glean biological insight.



	project pipeline
	A pipeline that is project specific. Usually code is developed
first inside a project pipeline. When it becomes generally
useful, it may be refactored into a production pipeline.



	stdin
	Unix standard input. Most CGAT tools read data from stdin.



	stdout
	Unix standard output. Most CGAT tools output data to stdout.



	stderr
	Unix standard error. This is where errors go.



	loglevel
	Verbosity of logging information. The logging level can be
determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.









            

          

      

      

    

  

  
    
    

    Dependency graph
    

    

    

    
 
  

    
      
          
            
  
Dependency graph

This page contains a graph visualization of the dependencies
within the CGAT code collection (including the CGAT pipelines).
Scripts, modules and pipelines are coloured differently.


     



            

          

      

      

    

  

  
    
    

    Importing CGAT scripts into galaxy
    

    

    

    
 
  

    
      
          
            
  
Importing CGAT scripts into galaxy


General Preparation

Add /ifs/devel/cgat to PYTHONPATH [https://docs.python.org/2.7/using/cmdline.html#envvar-PYTHONPATH].

Make sure that extensions have been built:

python setup.py develop --multi-version





The following directories are important:


	galaxy-dist
	Location of the galaxy distribution



	cgat-xml
	CGAT directory within the galaxy distribution. Create by typing:

mkdir <galaxy-dist>/tools/cgat







	cgat-scripts
	The CGAT scripts directory.







Adding a script manually

The following instructions describe the steps necessary to add a cgat
script to galaxy.

For example, we want to publish the bam2stats.py
script. First, create a file in <galaxy-dist>/tools/cgat called
bam2stats.xml with the following contents:

<tool id="bam2stats.py" name="Compute Stats from BAM file">
  <description>Compute stats for a bam file</description>
    <command
      interpreter="python">/ifs/devel/cgat/scripts/bam2stats.py -v 0 &lt; $input &gt; $output
    </command>
    <inputs>
       <param format="bam" name="input" type="data" label="Source file"/>
    </inputs>
    <outputs>
       <data format="tabular" name="output" />
    </outputs>
  <help>
  Compute statistics for a bam file.
  </help>
</tool>





Add an entry to tool_conf.xml for the script:

<section name="CGAT Tools" id="cgat_tools">
  <tool file="cgat/bam2stats.xml" />
</section>





After restarting galaxy, the bam2stats command should now be
visible in the CGAT section.



Automatic conversion of scripts

The CGAT tool collection contains a script called <no title> that can create
and xml file for inclusion into galaxy. To create a wrapper for
Purpose, run:

python <cgat-scripts>cgat2rdf.py --format=galaxy <cgat-scripts>bam2stats.py > <cgat-xml>bam2stats.xml





As before, add an entry to tool_conf.xml for the script.

For automatted conversion, a few rules need to be followed (see below).


Writing galaxy compatible scripts

CGAT scripts have generally a call interface that is compatible with
galaxy and can thus be easily integrated. However, to make automatic
conversion as easy as possible, conforming to a few coding conventions
help.


	Assign a metavar type to command line options of genomic file
formats. For example:

parser.add_option("-b", "--bam-file", dest="bam_files", type="string", metavar="bam",
                  help="filename with read mapping"
                       " information. Multiple files can be "
                       " submitted in a comma-separated list"  )







	Use Experiment.OptionParser instead of optparse.OptionParser. The
former has some extensions that make creating galaxy xml files
easier. In particular, Experiment.OptionParser permits supplying
a list of ‘,’-separated values to options that accept multiple
values.


	Follow the CGAT script naming convention. If possible, scripts
should be named <format_in>2<format_out>.py. Formats can
be mapped to other types in <no title>. For example,
stats and table are both mapped to the format tabular.









            

          

      

      

    

  

  
    
    

    Glossary
    

    

    

    
 
  

    
      
          
            
  
Glossary


File formats


	yaml
	Language to serialize objects. Used in the CGAT testing
framework. (YAML [http://en.wikipedia.org/wiki/YAML]).



	bam
	Format to store genomic alignments in a compressed format.
(BAM [http://samtools.sourceforge.net/]).



	bed
	File containing genomic intervals.
(BED [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]).



	vcf
	Variant call format [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41].



	gtf
	General transfer format [http://www.ensembl.org/info/website/upload/gff.html].
Format to store genes and transcripts.



	gff
	General feature format [http://www.ensembl.org/info/website/upload/gff.html].



	bigwig
	Compressed format for displaying numerical values across
genomic ranges (BIGWIG [https://genome.ucsc.edu/goldenPath/help/bigWig.html]).



	fasta
	Sequence format.



	wiggle
	Format for displaying numerical values across genomic
ranges (Wiggle [https://genome.ucsc.edu/goldenPath/help/wiggle.html]).



	psl
	Genomic alignment format. The format is described in detail
(PSL [https://genome.ucsc.edu/FAQ/FAQformat.html#format2].



	sam
	Format to store genomic alignments
(SAM [http://samtools.sourceforge.net/]).



	gdl
	gdl



	tsv
	Tab separated values. In these tables, records are separated by new-line
characters and fields by tab characters. Lines with comments are started
by the # character and are ignored. The first uncommented line
should contain the column headers. For example:

# This is a comment
gene_id       length
gene1 1000
gene2 2000
# Another comment







	svg
	pass



	edge list
	pass



	fastq
	Sequence format containing quality scores, more background is
here [http://en.wikipedia.org/wiki/FASTQ_format]



	sra
	sra



	axt
	axt



	agp
	AGP format [https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/]



	rdf
	Resource description framework [http://en.wikipedia.org/wiki/Resource_Description_Framework]







Other terms


	test directory
	Directory that contains the test.yaml, input and
reference files for testing scripts.



	experiment
	experiment



	replicate
	replicate



	graph
	graph



	track
	track



	graph
	graph



	submit host
	pass



	execution host
	pass



	edge list
	pass



	task
	pass



	sphinxreport
	sphinxreport



	query
	pass



	target
	pass



	code directory
	pass



	go
	pass



	goslim
	pass



	fastq
	pass



	tss
	Transcription start site



	production pipeline
	A pipeline that performs common tasks on a certain type of
data. The idea of a production pipeline is to provide common
preprocessing of data and a first look. A project
pipeline might then take data from one or more
production pipeline to glean biological insight.



	project pipeline
	A pipeline that is project specific. Usually code is developed
first inside a project pipeline. When it becomes generally
useful, it may be refactored into a production pipeline.



	stdin
	Unix standard input. Most CGAT tools read data from stdin.



	stdout
	Unix standard output. Most CGAT tools output data to stdout.



	stderr
	Unix standard error. This is where errors go.



	loglevel
	Verbosity of logging information. The logging level can be
determined by the --verbose option. A
level of 0 means no logging output, while 1 is information
messages only, while 2 outputs also debugging information.









            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

    

    

 


  

    
      
          
            

   Python Module Index


   
   _ | 
   a | 
   b | 
   c | 
   d | 
   f | 
   g | 
   h | 
   i | 
   m | 
   r | 
   s | 
   t | 
   v | 
   w
   


   
     		 	

     		
       _	

     
       	
       	
       __init__	
       

     		 	

     		
       a	

     
       	
       	
       AGP	
       

     
       	
       	
       AString	
       

     		 	

     		
       b	

     
       	
       	
       BamTools	
       

     
       	
       	
       Bed	
       

     
       	
       	
       Blat	
       

     		 	

     		
       c	

     
       	
       	
       CBioPortal	
       

     
       	[image: -]
       	
       cgat	
       

     
       	
       	   
       cgat.tools.__init__	
       

     
       	
       	   
       cgat.tools.bam2bam	
       

     
       	
       	   
       cgat.tools.bam2bed	
       

     
       	
       	   
       cgat.tools.bam2fastq	
       

     
       	
       	   
       cgat.tools.bam2geneprofile	
       

     
       	
       	   
       cgat.tools.bam2peakshape	
       

     
       	
       	   
       cgat.tools.bam2stats	
       

     
       	
       	   
       cgat.tools.bam2UniquePairs	
       

     
       	
       	   
       cgat.tools.bam2wiggle	
       

     
       	
       	   
       cgat.tools.bam_vs_bam	
       

     
       	
       	   
       cgat.tools.bam_vs_bed	
       

     
       	
       	   
       cgat.tools.bams2bam	
       

     
       	
       	   
       cgat.tools.bcl2fastq	
       

     
       	
       	   
       cgat.tools.bed2annotator	
       

     
       	
       	   
       cgat.tools.bed2bed	
       

     
       	
       	   
       cgat.tools.bed2fasta	
       

     
       	
       	   
       cgat.tools.bed2gff	
       

     
       	
       	   
       cgat.tools.bed2graph	
       

     
       	
       	   
       cgat.tools.bed2plot	
       

     
       	
       	   
       cgat.tools.bed2stats	
       

     
       	
       	   
       cgat.tools.beds2beds	
       

     
       	
       	   
       cgat.tools.beds2counts	
       

     
       	
       	   
       cgat.tools.cat_tables	
       

     
       	
       	   
       cgat.tools.cgat2dot	
       

     
       	
       	   
       cgat.tools.cgat_galaxy_wrapper	
       

     
       	
       	   
       cgat.tools.cgat_get_options	
       

     
       	
       	   
       cgat.tools.cgat_pep8_code_quality	
       

     
       	
       	   
       cgat.tools.cgat_rebuild_extensions	
       

     
       	
       	   
       cgat.tools.cgat_script_template	
       

     
       	
       	   
       cgat.tools.chain2psl	
       

     
       	
       	   
       cgat.tools.combine_tables	
       

     
       	
       	   
       cgat.tools.csv2csv	
       

     
       	
       	   
       cgat.tools.csv2db	
       

     
       	
       	   
       cgat.tools.csv_cut	
       

     
       	
       	   
       cgat.tools.csv_intersection	
       

     
       	
       	   
       cgat.tools.csv_rename	
       

     
       	
       	   
       cgat.tools.csv_select	
       

     
       	
       	   
       cgat.tools.csv_set	
       

     
       	
       	   
       cgat.tools.csvs2csv	
       

     
       	
       	   
       cgat.tools.data2histogram	
       

     
       	
       	   
       cgat.tools.diff_bam	
       

     
       	
       	   
       cgat.tools.diff_bed	
       

     
       	
       	   
       cgat.tools.diff_chains	
       

     
       	
       	   
       cgat.tools.diff_fasta	
       

     
       	
       	   
       cgat.tools.diff_gtf	
       

     
       	
       	   
       cgat.tools.fasta2bed	
       

     
       	
       	   
       cgat.tools.fasta2fasta	
       

     
       	
       	   
       cgat.tools.fasta2kmercontent	
       

     
       	
       	   
       cgat.tools.fasta2variants	
       

     
       	
       	   
       cgat.tools.fastas2fasta	
       

     
       	
       	   
       cgat.tools.fastq2fastq	
       

     
       	
       	   
       cgat.tools.fastq2summary	
       

     
       	
       	   
       cgat.tools.fastq2table	
       

     
       	
       	   
       cgat.tools.fastqs2fasta	
       

     
       	
       	   
       cgat.tools.fastqs2fastq	
       

     
       	
       	   
       cgat.tools.fastqs2fastqs	
       

     
       	
       	   
       cgat.tools.genome_bed	
       

     
       	
       	   
       cgat.tools.gff2bed	
       

     
       	
       	   
       cgat.tools.gff2coverage	
       

     
       	
       	   
       cgat.tools.gff2fasta	
       

     
       	
       	   
       cgat.tools.gff2gff	
       

     
       	
       	   
       cgat.tools.gff2histogram	
       

     
       	
       	   
       cgat.tools.gff2psl	
       

     
       	
       	   
       cgat.tools.gff2stats	
       

     
       	
       	   
       cgat.tools.gff2table	
       

     
       	
       	   
       cgat.tools.gff32gtf	
       

     
       	
       	   
       cgat.tools.gtf2fasta	
       

     
       	
       	   
       cgat.tools.gtf2gff	
       

     
       	
       	   
       cgat.tools.gtf2gtf	
       

     
       	
       	   
       cgat.tools.gtf2tsv	
       

     
       	
       	   
       cgat.tools.gtfs2tsv	
       

     
       	
       	   
       cgat.tools.index2bed	
       

     
       	
       	   
       cgat.tools.index_fasta	
       

     
       	
       	   
       cgat.tools.medip_merge_intervals	
       

     
       	
       	   
       cgat.tools.metaphlan2table	
       

     
       	
       	   
       cgat.tools.rnaseq_junction_bam2bam	
       

     
       	
       	   
       cgat.tools.split_fasta	
       

     
       	
       	   
       cgat.tools.split_file	
       

     
       	
       	   
       cgat.tools.split_gff	
       

     
       	
       	   
       cgat.tools.table2table	
       

     
       	
       	   
       cgat.tools.transfac2transfac	
       

     
       	
       	   
       cgat.tools.vcf2vcf	
       

     
       	
       	   
       cgat.tools.vcfstats2db	
       

     
       	
       	   
       cgat.tools.wig2bed	
       

     		 	

     		
       d	

     
       	
       	
       dictzip	
       

     		 	

     		
       f	

     
       	
       	
       FastaIterator	
       

     
       	
       	
       Fastq	
       

     		 	

     		
       g	

     
       	
       	
       Genomics	
       

     
       	
       	
       GFF3	
       

     
       	
       	
       Glam2	
       

     
       	
       	
       Glam2Scan	
       

     
       	
       	
       GTF	
       

     		 	

     		
       h	

     
       	
       	
       Histogram	
       

     
       	
       	
       Histogram2D	
       

     		 	

     		
       i	

     
       	
       	
       IGV	
       

     
       	
       	
       IndexedFasta	
       

     
       	
       	
       IndexedGenome	
       

     
       	
       	
       Intervals	
       

     
       	
       	
       Iterators	
       

     		 	

     		
       m	

     
       	
       	
       Masker	
       

     
       	
       	
       MatrixTools	
       

     
       	
       	
       Motifs	
       

     		 	

     		
       r	

     
       	
       	
       RateEstimation	
       

     
       	
       	
       RLE	
       

     		 	

     		
       s	

     
       	
       	
       SequencePairProperties	
       

     
       	
       	
       SequenceProperties	
       

     
       	
       	
       SetTools	
       

     
       	
       	
       Sra	
       

     
       	
       	
       Stats	
       

     
       	
       	
       SVGdraw	
       

     		 	

     		
       t	

     
       	[image: -]
       	
       tools	
       

     
       	
       	   
       tools.bam_vs_gtf	
       

     
       	
       	
       Tree	
       

     
       	
       	
       TreeTools	
       

     		 	

     		
       v	

     
       	
       	
       Variants	
       

     
       	
       	
       VCF	
       

     		 	

     		
       w	

     
       	
       	
       WrapperCodeML	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    

    

    
 
  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 


_


  	
      	
    __init__

      
        	module


      


  





A


  	
      	Accumulate() (in module Histogram)


      	Add() (in module Histogram)


      	addAlignments() (in module Blat)


      	addComplementIntervals() (in module Intervals)


      	addElement() (SVGdraw.SVGelement method)


      	addOptions() (in module MatrixTools)


      	AddOptions() (WrapperCodeML.BaseML method)

      
        	(WrapperCodeML.CodeML method)


      


      	addProperties() (SequenceProperties.SequenceProperties method)

      
        	(SequenceProperties.SequencePropertiesAA method)


        	(SequenceProperties.SequencePropertiesAminoAcids method)


        	(SequenceProperties.SequencePropertiesCodons method)


        	(SequenceProperties.SequencePropertiesCodonTranslator method)


        	(SequenceProperties.SequencePropertiesCodonUsage method)


        	(SequenceProperties.SequencePropertiesCounts method)


        	(SequenceProperties.SequencePropertiesCpg method)


        	(SequenceProperties.SequencePropertiesDegeneracy method)


        	(SequenceProperties.SequencePropertiesDN method)


        	(SequenceProperties.SequencePropertiesEntropy method)


        	(SequenceProperties.SequencePropertiesGaps method)


        	(SequenceProperties.SequencePropertiesLength method)


        	(SequenceProperties.SequencePropertiesNA method)


        	(SequenceProperties.SequencePropertiesSequence method)


      


      	AddRelativeAndCumulativeDistributions() (in module Histogram)


  

  	
      	adjustPValues() (in module Stats)


      	after() (IndexedGenome.Quicksect method)


      	
    AGP

      
        	module


      


      	agp


      	AGP (class in AGP)


      	AlignedPair2SubstitutionMatrix() (in module Genomics)


      	Alignment2CDNA() (in module Genomics)


      	Alignment2DNA() (in module Genomics)


      	Alignment2ExonBoundaries() (in module Genomics)


      	Alignment2PeptideAlignment() (in module Genomics)


      	Alignment2String() (in module Genomics)


      	AlignmentProtein2CDNA() (in module Genomics)


      	animate (class in SVGdraw)


      	animateColor (class in SVGdraw)


      	animateMotion (class in SVGdraw)


      	animateTransform (class in SVGdraw)


      	asDict() (GTF.Entry method)


      	asRanges() (in module GTF)


      	
    AString

      
        	module


      


      	AString (class in AString)


      	attributes (GTF.Entry attribute)


      	axt


  





B


  	
      	bam


      	bamG


      	bamT


      	
    BamTools

      
        	module


      


      	BaseML (class in WrapperCodeML)


      	BaseMLResult (class in WrapperCodeML)


      	
    Bed

      
        	module


      


      	bed


      	Bed (class in Bed)


      	bed_iterator() (in module Bed)


      	before() (IndexedGenome.Quicksect method)


      	benchmarkRandomFragment() (in module IndexedFasta)


      	bezier() (SVGdraw.pathdata method)


      	bigwig


  

  	
      	binIntervals() (in module Bed)


      	bins() (in module cgat.tools.bed2bed)


      	
    Blat

      
        	module


      


      	block() (in module cgat.tools.bed2bed)


      	blockCount (Bed.Bed attribute)


      	blocked_iterator() (in module Bed)


      	blockSizes (Bed.Bed attribute)


      	blockStarts (Bed.Bed attribute)


      	Branchlength2Support() (in module TreeTools)


      	buildAlleles() (in module Variants)


      	BuildMapSpecies2Genes() (in module TreeTools)


      	buildMatrixFromEdges() (in module MatrixTools)


      	buildMatrixFromLists() (in module MatrixTools)


      	buildMatrixFromTables() (in module MatrixTools)


      	buildOffsets() (in module Variants)


      	buildSubstitutionMatrix() (SequencePairProperties.SequencePairPropertiesCountsNa method)


  





C


  	
      	Calculate() (in module Histogram)

      
        	(in module Histogram2D)


      


      	CalculateCAIWeightsFromCounts() (in module Genomics)


      	CalculateCodonFrequenciesFromCounts() (in module Genomics)


      	CalculateConst() (in module Histogram)


      	CalculateFromTable() (in module Histogram)


      	calculateOverlap() (in module Intervals)


      	CalculatePairIndices() (in module Genomics)


      	calculatePatternsFromTree() (in module TreeTools)


      	CalculateRCSUValuesFromCounts() (in module Genomics)


      	calculateScale() (WrapperCodeML.Evolver method)


      	
    CBioPortal

      
        	module


      


      	CBioPortal (class in CBioPortal)


      	CDGSError


      	
    cgat.tools.__init__

      
        	module


      


      	
    cgat.tools.bam2bam

      
        	module


      


      	
    cgat.tools.bam2bed

      
        	module


      


      	
    cgat.tools.bam2fastq

      
        	module


      


      	
    cgat.tools.bam2geneprofile

      
        	module


      


      	
    cgat.tools.bam2peakshape

      
        	module


      


      	
    cgat.tools.bam2stats

      
        	module


      


      	
    cgat.tools.bam2UniquePairs

      
        	module


      


      	
    cgat.tools.bam2wiggle

      
        	module


      


      	
    cgat.tools.bam_vs_bam

      
        	module


      


      	
    cgat.tools.bam_vs_bed

      
        	module


      


      	
    cgat.tools.bams2bam

      
        	module


      


      	
    cgat.tools.bcl2fastq

      
        	module


      


      	
    cgat.tools.bed2annotator

      
        	module


      


      	
    cgat.tools.bed2bed

      
        	module


      


      	
    cgat.tools.bed2fasta

      
        	module


      


      	
    cgat.tools.bed2gff

      
        	module


      


      	
    cgat.tools.bed2graph

      
        	module


      


      	
    cgat.tools.bed2plot

      
        	module


      


      	
    cgat.tools.bed2stats

      
        	module


      


      	
    cgat.tools.beds2beds

      
        	module


      


      	
    cgat.tools.beds2counts

      
        	module


      


      	
    cgat.tools.cat_tables

      
        	module


      


      	
    cgat.tools.cgat2dot

      
        	module


      


      	
    cgat.tools.cgat_galaxy_wrapper

      
        	module


      


      	
    cgat.tools.cgat_get_options

      
        	module


      


      	
    cgat.tools.cgat_pep8_code_quality

      
        	module


      


      	
    cgat.tools.cgat_rebuild_extensions

      
        	module


      


      	
    cgat.tools.cgat_script_template

      
        	module


      


      	
    cgat.tools.chain2psl

      
        	module


      


      	
    cgat.tools.combine_tables

      
        	module


      


      	
    cgat.tools.csv2csv

      
        	module


      


      	
    cgat.tools.csv2db

      
        	module


      


      	
    cgat.tools.csv_cut

      
        	module


      


      	
    cgat.tools.csv_intersection

      
        	module


      


      	
    cgat.tools.csv_rename

      
        	module


      


      	
    cgat.tools.csv_select

      
        	module


      


      	
    cgat.tools.csv_set

      
        	module


      


      	
    cgat.tools.csvs2csv

      
        	module


      


      	
    cgat.tools.data2histogram

      
        	module


      


      	
    cgat.tools.diff_bam

      
        	module


      


      	
    cgat.tools.diff_bed

      
        	module


      


      	
    cgat.tools.diff_chains

      
        	module


      


      	
    cgat.tools.diff_fasta

      
        	module


      


      	
    cgat.tools.diff_gtf

      
        	module


      


      	
    cgat.tools.fasta2bed

      
        	module


      


      	
    cgat.tools.fasta2fasta

      
        	module


      


      	
    cgat.tools.fasta2kmercontent

      
        	module


      


      	
    cgat.tools.fasta2variants

      
        	module


      


      	
    cgat.tools.fastas2fasta

      
        	module


      


  

  	
      	
    cgat.tools.fastq2fastq

      
        	module


      


      	
    cgat.tools.fastq2summary

      
        	module


      


      	
    cgat.tools.fastq2table

      
        	module


      


      	
    cgat.tools.fastqs2fasta

      
        	module


      


      	
    cgat.tools.fastqs2fastq

      
        	module


      


      	
    cgat.tools.fastqs2fastqs

      
        	module


      


      	
    cgat.tools.genome_bed

      
        	module


      


      	
    cgat.tools.gff2bed

      
        	module


      


      	
    cgat.tools.gff2coverage

      
        	module


      


      	
    cgat.tools.gff2fasta

      
        	module


      


      	
    cgat.tools.gff2gff

      
        	module


      


      	
    cgat.tools.gff2histogram

      
        	module


      


      	
    cgat.tools.gff2psl

      
        	module


      


      	
    cgat.tools.gff2stats

      
        	module


      


      	
    cgat.tools.gff2table

      
        	module


      


      	
    cgat.tools.gff32gtf

      
        	module


      


      	
    cgat.tools.gtf2fasta

      
        	module


      


      	
    cgat.tools.gtf2gff

      
        	module


      


      	
    cgat.tools.gtf2gtf

      
        	module


      


      	
    cgat.tools.gtf2tsv

      
        	module


      


      	
    cgat.tools.gtfs2tsv

      
        	module


      


      	
    cgat.tools.index2bed

      
        	module


      


      	
    cgat.tools.index_fasta

      
        	module


      


      	
    cgat.tools.medip_merge_intervals

      
        	module


      


      	
    cgat.tools.metaphlan2table

      
        	module


      


      	
    cgat.tools.rnaseq_junction_bam2bam

      
        	module


      


      	
    cgat.tools.split_fasta

      
        	module


      


      	
    cgat.tools.split_file

      
        	module


      


      	
    cgat.tools.split_gff

      
        	module


      


      	
    cgat.tools.table2table

      
        	module


      


      	
    cgat.tools.transfac2transfac

      
        	module


      


      	
    cgat.tools.vcf2vcf

      
        	module


      


      	
    cgat.tools.vcfstats2db

      
        	module


      


      	
    cgat.tools.wig2bed

      
        	module


      


      	cgatIndexedFasta (class in IndexedFasta)


      	checkSection() (WrapperCodeML.CodeML method)


      	chrom_iterator() (in module GFF3)


      	chunk_iterator() (in module GTF)


      	circle (class in SVGdraw)


      	clean_cache() (in module Sra)


      	closepath() (SVGdraw.pathdata method)


      	code directory


      	CodeML (class in WrapperCodeML)


      	CodeMLAncestralSequence (class in WrapperCodeML)


      	CodeMLBranchInfo (class in WrapperCodeML)


      	CodeMLPairwise (class in WrapperCodeML)


      	CodeMLResultPair (class in WrapperCodeML)


      	CodeMLResultPairs (class in WrapperCodeML)


      	CodeMLResultSites (class in WrapperCodeML)


      	CodeMLSites (class in WrapperCodeML)


      	columns() (Bed.Bed property)


      	combinations() (in module SetTools)


      	Combine() (in module Histogram)


      	combine() (in module Intervals)


      	combineAtDistance() (in module Intervals)


      	CombineOverlaps() (in module GTF)


      	compareLists() (in module SetTools)


      	complement() (in module Intervals)


      	compress() (in module RLE)


      	compressIndex() (IndexedFasta.cgatIndexedFasta method)


      	computeROC() (in module Stats)


      	contig (Bed.Bed attribute)

      
        	(GTF.Entry attribute)


      


      	convert() (in module Histogram)


      	convertCoordinates() (Blat.Match method)


      	convertStrand() (in module Genomics)


      	convertTree2Graph() (in module TreeTools)


      	copy() (Bed.Bed method)

      
        	(GTF.Entry method)


      


      	CorrelationTest (class in Stats)


      	count() (in module FastaIterator)


      	Count() (in module Histogram)


      	CountBranchPoints() (in module TreeTools)


      	CountCodons() (in module Genomics)


      	CountDuplications() (in module TreeTools)


      	CountGeneFeatures() (in module Genomics)


      	countMotifs() (in module Motifs)


      	countSubstitutions() (in module RateEstimation)


      	createDatabase() (in module IndexedFasta)


      	Cumulate() (in module Histogram)


      	cumulate() (in module Histogram)


      	cursor (class in SVGdraw)


  





D


  	
      	decode() (in module RLE)


      	decodeGenotype() (in module Genomics)


      	defs (class in SVGdraw)


      	description (class in SVGdraw)


      	dfs() (Tree.Tree method)


      	
    dictzip

      
        	module


      


      	DistributionalParameters (class in Stats)


      	doBinomialTest() (in module Stats)


  

  	
      	doChiSquaredTest() (in module Stats)


      	doCorrelationTest() (in module Stats)


      	Documentation() (in module cgat.tools.vcf2vcf)


      	doFDRPython() (in module Stats)


      	doLogLikelihoodTest() (in module Stats)


      	doMannWhitneyUTest() (in module Stats)


      	doPairedTTest() (in module Stats)


      	doPearsonChiSquaredTest() (in module Stats)


      	doWelchsTTest() (in module Stats)


      	drawing (class in SVGdraw)


  





E


  	
      	edge list, [1]


      	ellarc() (SVGdraw.pathdata method)


      	ellipse (class in SVGdraw)


      	encode() (in module RLE)


      	encodeGenotype() (in module Genomics)


      	end (Bed.Bed attribute)

      
        	(GTF.Entry attribute)


      


      	Entry (class in GFF3)

      
        	(class in GTF)


      


      	
    environment variable

      
        	PYTHONPATH


      


  

  	
      	Error, [1], [2]


      	evaluateCodonPair() (in module RateEstimation)


      	Evolver (class in WrapperCodeML)


      	EvolverBaseml (class in WrapperCodeML)


      	execution host


      	Exons2Alignment() (in module Genomics)


      	experiment


      	ExtendedVariant (in module Variants)


      	extract() (in module Sra)


  





F


  	
      	fasta


      	
    FastaIterator

      
        	module


      


      	FastaIterator (class in FastaIterator)


      	FastaRecord (class in FastaIterator)


      	
    Fastq

      
        	module


      


      	fastq, [1]


      	feature (GTF.Entry attribute)


      	fetch_ENA() (in module Sra)


      	fetch_ENA_files() (in module Sra)


      	fetch_TCGA_BAM() (in module Sra)


      	fetch_TCGA_fastq() (in module Sra)


      	fileno() (dictzip.GzipFile method)


      	Fill() (in module Histogram)


      	fill() (in module Histogram)


      	fillHistograms() (in module Histogram)


      	filterMasked() (in module Stats)


      	flat_file_iterator() (in module GFF3)


      	flat_gene_iterator() (in module GTF)


  

  	
      	fn() (Stats.ROCResult property)


      	fnr() (Stats.ROCResult property)


      	fold (FastaIterator.FastaRecord attribute)


      	forceForwardCoordinates() (in module Genomics)


      	format (Fastq.Record attribute)


      	fp() (Stats.ROCResult property)


      	fpr() (Stats.ROCResult property)


      	frame (GTF.Entry attribute)


      	fromArray() (in module Intervals)


      	fromBed() (GTF.Entry method)


      	fromGTF() (Bed.Bed method)

      
        	(GTF.Entry method)


      


      	fromIntervals() (Bed.Bed method)


      	fromMali() (WrapperCodeML.Evolver method)

      
        	(WrapperCodeML.EvolverBaseml method)


      


      	fromMap() (Blat.Match method)


      	fromMaq() (Blat.Match method)


      	fromPair() (Blat.Match method)


      	fromPhred() (Fastq.Record method)


      	fromPSL() (Blat.MatchPSLX method)


      	fromResult() (WrapperCodeML.CodeMLResultPairs method)


  





G


  	
      	gdl


      	gene_id (GTF.Entry attribute)


      	gene_iterator() (in module GTF)


      	Genes2Species() (in module TreeTools)


      	
    Genomics

      
        	module


      


      	genotype() (Variants.Variant property)


      	get() (IndexedGenome.IndexedGenome method)

      
        	(IndexedGenome.Quicksect method)


      


      	get_leaves() (Tree.Tree method)


      	get_nodes() (Tree.Tree method)


      	GetAlignmentLength() (in module Genomics)


      	getAllCombinations() (in module SetTools)


      	GetAllNodes() (in module TreeTools)


      	getAlphabet() (Masker.Masker method)


      	getAreaUnderCurve() (in module Stats)


      	getAttributeField() (GFF3.Entry method)


      	GetBiasedCodonUsage() (in module Genomics)


      	getBlocks() (Blat.Match method)


      	GetBranchLengths() (in module TreeTools)


      	getCancerStudies() (CBioPortal.CBioPortal method)


      	getCaseLists() (CBioPortal.CBioPortal method)


      	GetChildNodesWhereTrue() (in module TreeTools)


      	getClinicalData() (CBioPortal.CBioPortal method)


      	GetCommonAncestor() (in module TreeTools)


      	getComponents() (in module Blat)


      	getContigs() (IndexedFasta.cgatIndexedFasta method)


      	getContigSizes() (IndexedFasta.cgatIndexedFasta method)


      	getConverter() (in module IndexedFasta)


      	getCounts() (in module Motifs)


      	getDatabaseName() (IndexedFasta.cgatIndexedFasta method)


      	GetDegenerateSites() (in module Genomics)


      	getDistanceGTR() (in module RateEstimation)


      	GetDistancesBetweenTaxa() (in module TreeTools)


      	GetDistanceToRoot() (in module TreeTools)


      	getEntropy() (SequenceProperties.SequencePropertiesBias method)

      
        	(SequenceProperties.SequencePropertiesEntropy method)


      


      	getGCContent() (Genomics.SequencePairInfo method)


      	getGeneticProfiles() (CBioPortal.CBioPortal method)


      	getHeader() (Stats.DistributionalParameters method)

      
        	(Stats.Summary method)


      


      	getHeaders() (SequenceProperties.SequencePropertiesAA method)

      
        	(Stats.DistributionalParameters method)


        	(Stats.Summary method)


      


      	GetHID() (in module Genomics)


      	getIntersections() (in module Intervals)


      	GetIntronType() (in module Genomics)


      	getKL() (SequenceProperties.SequencePropertiesBias method)


      	GetLeaves() (in module TreeTools)


      	getLength() (in module Intervals)

      
        	(IndexedFasta.cgatIndexedFasta method)


      


      	getLengths() (IndexedFasta.cgatIndexedFasta method)


      	getLink() (CBioPortal.CBioPortal method)


      	GetMapAA2Codons() (in module Genomics)


      	getMapQuery2Target() (Blat.Match method)


      	getMapTarget2Query() (Blat.Match method)


      	getMatrixFromEdges() (in module MatrixTools)


      	GetMaxIndex() (in module TreeTools)


      	getMessageLength() (SequenceProperties.SequencePropertiesBias method)


  

  	
      	GetMonophyleticPairs() (in module TreeTools)


      	getMutationData() (CBioPortal.CBioPortal method)


      	GetNodeMap() (in module TreeTools)


      	getNumColumns() (in module Bed)


      	getNumLeaves() (Tree.Tree method)


      	getOccurances() (in module Motifs)


      	getOffset() (in module Fastq)


      	getOncoprintHTML() (CBioPortal.CBioPortal method)


      	getOptions() (in module WrapperCodeML)


      	GetOptions() (WrapperCodeML.CodeML method)


      	getParameters() (WrapperCodeML.EvolverBaseml method)


      	GetParentNodeWhereTrue() (in module TreeTools)


      	getPercentAltered() (CBioPortal.CBioPortal method)


      	getPerformance() (in module Stats)


      	getPooledVariance() (in module Stats)


      	getProfileData() (CBioPortal.CBioPortal method)


      	getProteinArrayData() (CBioPortal.CBioPortal method)


      	getProteinArrayInfo() (CBioPortal.CBioPortal method)


      	getQMatrix() (in module RateEstimation)


      	getRandomCoordinates() (IndexedFasta.cgatIndexedFasta method)


      	getRateMatrix() (in module RateEstimation)


      	getReadLength() (in module Fastq)


      	getSection() (WrapperCodeML.CodeML method)


      	getSensitivityRecall() (in module Stats)


      	getSequence() (IndexedFasta.cgatIndexedFasta method)

      
        	(IndexedFasta.PysamIndexedFasta method)


      


      	getSignificance() (in module Stats)


      	GetSize() (in module TreeTools)


      	GetSubsets() (in module TreeTools)


      	GetSubtree() (in module TreeTools)


      	GetTaxa() (in module TreeTools)


      	GetTaxaForSpecies() (in module TreeTools)


      	GetTaxonomicNames() (in module TreeTools)


      	getToken() (IndexedFasta.cgatIndexedFasta method)


      	getTotalAltered() (CBioPortal.CBioPortal method)


      	GetUniformCodonUsage() (in module Genomics)


      	getZScore() (Stats.DistributionalParameters method)


      	gff


      	
    GFF3

      
        	module


      


      	
    Glam2

      
        	module


      


      	
    Glam2Scan

      
        	module


      


      	go


      	goslim


      	graph, [1]


      	Graph2Tree() (in module TreeTools)


      	group (class in SVGdraw)


      	group_by_distance() (in module Iterators)


      	grouped_iterator() (in module Bed)


      	
    GTF

      
        	module


      


      	gtf


      	guessDataType() (Fastq.Record method)

      
        	(in module Fastq)


      


      	guessFormat() (Fastq.Record method)

      
        	(in module Fastq)


      


      	GzipFile (class in dictzip)


  





H


  	
      	HalfIdentity() (in module GTF)


      	hasOverlap() (GTF.Entry method)


      	
    Histogram

      
        	module


      


  

  	
      	histogram() (in module Histogram)


      	
    Histogram2D

      
        	module


      


      	hline() (SVGdraw.pathdata method)


  





I


  	
      	identifier (Fastq.Record attribute)


      	Identity() (in module GTF)


      	
    IGV

      
        	module


      


      	IGV (class in IGV)


      	image (class in SVGdraw)


      	index_factory (IndexedGenome.IndexedGenome attribute)

      
        	(IndexedGenome.Simple attribute)


      


      	
    IndexedFasta

      
        	module


      


      	IndexedFasta() (in module IndexedFasta)


      	
    IndexedGenome

      
        	module


      


      	IndexedGenome (class in IndexedGenome)


      	indexVariants() (in module Variants)


      	initializeQMatrix() (in module RateEstimation)


      	intersect() (in module Intervals)


      	
    Intervals

      
        	module


      


      	invert() (GTF.Entry method)


      	IsCompatible() (in module TreeTools)


      	isHalfIdentical() (GTF.Entry method)


      	isIdentical() (GTF.Entry method)


      	IsJunk() (in module Genomics)


      	IsMonophyleticForSpecies() (in module TreeTools)


      	IsMonophyleticForTaxa() (in module TreeTools)


      	IsSingleSpecies() (in module TreeTools)


  

  	
      	itemRGB (Bed.Bed attribute)


      	iterate() (in module FastaIterator)

      
        	(in module Fastq)


      


      	iterate_convert() (in module Fastq)


      	iterate_guess() (in module Fastq)


      	iterate_together() (in module FastaIterator)


      	iterator() (in module Bed)

      
        	(in module Blat)


        	(in module GTF)


      


      	iterator2() (in module Blat)


      	iterator_contigs() (in module GTF)


      	iterator_filtered() (in module GTF)


      	iterator_from_gff() (in module GFF3)


      	iterator_min_feature_length() (in module GTF)


      	iterator_overlapping_genes() (in module GTF)


      	iterator_overlaps() (in module GTF)


      	iterator_per_query() (in module Blat)


      	iterator_pslx() (in module Blat)


      	iterator_query_overlap() (in module Blat)


      	iterator_sorted() (in module GTF)


      	iterator_sorted_chunks() (in module GTF)


      	iterator_target_overlap() (in module Blat)


      	iterator_test() (in module Blat)


      	iterator_transcripts2genes() (in module GTF)


      	
    Iterators

      
        	module


      


      	iupac2regex() (in module Motifs)


  





J


  	
      	joined_iterator() (in module GTF)

      
        	(in module Intervals)


      


  





L


  	
      	line (class in SVGdraw)


      	line() (SVGdraw.pathdata method)


      	lineargradient (class in SVGdraw)


      	link (class in SVGdraw)


      	loadPair() (SequencePairProperties.SequencePairPropertiesBaseML method)

      
        	(SequencePairProperties.SequencePairPropertiesCountsNa method)


        	(SequencePairProperties.SequencePairPropertiesPID method)


      


      	loadSequence() (SequenceProperties.SequenceProperties method)

      
        	(SequenceProperties.SequencePropertiesAA method)


        	(SequenceProperties.SequencePropertiesAminoAcids method)


        	(SequenceProperties.SequencePropertiesCodons method)


        	(SequenceProperties.SequencePropertiesCodonTranslator method)


        	(SequenceProperties.SequencePropertiesCounts method)


        	(SequenceProperties.SequencePropertiesCpg method)


        	(SequenceProperties.SequencePropertiesDegeneracy method)


        	(SequenceProperties.SequencePropertiesDN method)


        	(SequenceProperties.SequencePropertiesGaps method)


        	(SequenceProperties.SequencePropertiesHid method)


        	(SequenceProperties.SequencePropertiesLength method)


        	(SequenceProperties.SequencePropertiesNA method)


        	(SequenceProperties.SequencePropertiesSequence method)


      


  

  	
      	loglevel


      	lower() (AString.AString method)


  





M


  	
      	makeSubstitutionMatrix() (in module Genomics)


      	MapCodon2AA() (in module Genomics)


      	mapLocation() (AGP.AGP method)


      	MapTaxa() (in module TreeTools)


      	MapTerminalTaxa() (in module TreeTools)


      	marker (class in SVGdraw)


      	
    Masker

      
        	module


      


      	Masker (class in Masker)


      	MaskerBias (class in Masker)


      	MaskerDustMasker (class in Masker)


      	MaskerRandom (class in Masker)


      	MaskerSeg (class in Masker)


      	maskSequence() (Masker.Masker method)


      	maskSequences() (in module Masker)

      
        	(Masker.Masker method)


      


      	MaskStopCodons() (in module Genomics)


      	Match (class in Blat)

      
        	(class in Glam2Scan)


      


      	MatchPSLX (class in Blat)


      	
    MatrixTools

      
        	module


      


      	merge() (in module Bed)

      
        	(in module cgat.tools.bed2bed)


      


      	merged_gene_iterator() (in module GTF)


      	mergeVariants() (in module Variants)


      	
    module

      
        	__init__


        	AGP


        	AString


        	BamTools


        	Bed


        	Blat


        	CBioPortal


        	cgat.tools.__init__


        	cgat.tools.bam2bam


        	cgat.tools.bam2bed


        	cgat.tools.bam2fastq


        	cgat.tools.bam2geneprofile


        	cgat.tools.bam2peakshape


        	cgat.tools.bam2stats


        	cgat.tools.bam2UniquePairs


        	cgat.tools.bam2wiggle


        	cgat.tools.bam_vs_bam


        	cgat.tools.bam_vs_bed


        	cgat.tools.bams2bam


        	cgat.tools.bcl2fastq


        	cgat.tools.bed2annotator


        	cgat.tools.bed2bed


        	cgat.tools.bed2fasta


        	cgat.tools.bed2gff


        	cgat.tools.bed2graph


        	cgat.tools.bed2plot


        	cgat.tools.bed2stats


        	cgat.tools.beds2beds


        	cgat.tools.beds2counts


        	cgat.tools.cat_tables


        	cgat.tools.cgat2dot


        	cgat.tools.cgat_galaxy_wrapper


        	cgat.tools.cgat_get_options


        	cgat.tools.cgat_pep8_code_quality


        	cgat.tools.cgat_rebuild_extensions


        	cgat.tools.cgat_script_template


        	cgat.tools.chain2psl


        	cgat.tools.combine_tables


        	cgat.tools.csv2csv


        	cgat.tools.csv2db


        	cgat.tools.csv_cut


        	cgat.tools.csv_intersection


        	cgat.tools.csv_rename


        	cgat.tools.csv_select


        	cgat.tools.csv_set


        	cgat.tools.csvs2csv


        	cgat.tools.data2histogram


        	cgat.tools.diff_bam


        	cgat.tools.diff_bed


        	cgat.tools.diff_chains


        	cgat.tools.diff_fasta


        	cgat.tools.diff_gtf


        	cgat.tools.fasta2bed


        	cgat.tools.fasta2fasta


        	cgat.tools.fasta2kmercontent


        	cgat.tools.fasta2variants


        	cgat.tools.fastas2fasta


        	cgat.tools.fastq2fastq


        	cgat.tools.fastq2summary


        	cgat.tools.fastq2table


        	cgat.tools.fastqs2fasta


        	cgat.tools.fastqs2fastq


        	cgat.tools.fastqs2fastqs


        	cgat.tools.genome_bed


        	cgat.tools.gff2bed


        	cgat.tools.gff2coverage


        	cgat.tools.gff2fasta


        	cgat.tools.gff2gff


        	cgat.tools.gff2histogram


        	cgat.tools.gff2psl


        	cgat.tools.gff2stats


        	cgat.tools.gff2table


        	cgat.tools.gff32gtf


        	cgat.tools.gtf2fasta


        	cgat.tools.gtf2gff


        	cgat.tools.gtf2gtf


        	cgat.tools.gtf2tsv


        	cgat.tools.gtfs2tsv


        	cgat.tools.index2bed


        	cgat.tools.index_fasta


        	cgat.tools.medip_merge_intervals


        	cgat.tools.metaphlan2table


        	cgat.tools.rnaseq_junction_bam2bam


        	cgat.tools.split_fasta


        	cgat.tools.split_file


        	cgat.tools.split_gff


        	cgat.tools.table2table


        	cgat.tools.transfac2transfac


        	cgat.tools.vcf2vcf


        	cgat.tools.vcfstats2db


        	cgat.tools.wig2bed


        	dictzip


        	FastaIterator


        	Fastq


        	Genomics


        	GFF3


        	Glam2


        	Glam2Scan


        	GTF


        	Histogram


        	Histogram2D


        	IGV


        	IndexedFasta


        	IndexedGenome


        	Intervals


        	Iterators


        	Masker


        	MatrixTools


        	Motifs


        	RateEstimation


        	RLE


        	SequencePairProperties


        	SequenceProperties


        	SetTools


        	Sra


        	Stats


        	SVGdraw


        	tools.bam_vs_gtf


        	Tree


        	TreeTools


        	Variants


        	VCF


        	WrapperCodeML


      


  

  	
      	
    Motifs

      
        	module


      


      	move() (SVGdraw.pathdata method)


  





N


  	
      	name (Bed.Bed attribute)


      	Newick2Nexus() (in module TreeTools)


      	Newick2Tree() (in module TreeTools)


  

  	
      	Nexus2Newick() (in module TreeTools)


      	Nop() (in module Tree)


      	normalize() (in module Histogram)


  





O


  	
      	open() (in module dictzip)


  

  	
      	Overlap() (in module GTF)


  





P


  	
      	PairedTTest (class in Stats)


      	parse() (in module Glam2)

      
        	(in module Glam2Scan)


      


      	parse_region_string() (in module Genomics)


      	parseCoordinates() (in module IndexedFasta)


      	ParseFasta2Hash() (in module Genomics)


      	parseFrequencies() (WrapperCodeML.BaseML method)


      	parseGrids() (WrapperCodeML.CodeMLSites method)


      	parseInfo() (GFF3.Entry method)

      
        	(GTF.Entry method)


      


      	parseLog() (WrapperCodeML.CodeML method)

      
        	(WrapperCodeML.CodeMLPairwise method)


      


      	parseOutput() (WrapperCodeML.BaseML method)

      
        	(WrapperCodeML.CodeML method)


        	(WrapperCodeML.CodeMLPairwise method)


        	(WrapperCodeML.CodeMLSites method)


      


      	parsePairs() (WrapperCodeML.CodeMLPairwise method)


      	parseRst() (WrapperCodeML.CodeML method)


      	parseSites() (WrapperCodeML.CodeMLSites method)


      	ParsingError, [1], [2]


      	path (class in SVGdraw)


      	pathdata (class in SVGdraw)


  

  	
      	pattern (class in SVGdraw)


      	peek() (in module Sra)


      	point (class in SVGdraw)


      	polygon (class in SVGdraw)


      	polyline (class in SVGdraw)


      	pos() (Variants.Variant property)


      	pred() (Stats.ROCResult property)


      	prefetch() (in module Sra)


      	Print() (in module Histogram)

      
        	(in module Histogram2D)


      


      	PrintAscii() (in module Histogram)


      	printPrettyAlignment() (in module Genomics)


      	process_remote_BAM() (in module Sra)


      	production pipeline


      	project pipeline


      	prune() (in module Intervals)


      	PruneTerminal() (in module TreeTools)


      	PruneTree() (in module TreeTools)


      	psl


      	pvalue() (Stats.PairedTTest property)


      	PysamIndexedFasta (class in IndexedFasta)


      	PYTHONPATH


  





Q


  	
      	qbezier() (SVGdraw.pathdata method)


      	quals (Fastq.Record attribute)


  

  	
      	query


      	Quicksect (class in IndexedGenome)


      	quote() (in module GTF)


  





R


  	
      	radialgradient (class in SVGdraw)


      	
    RateEstimation

      
        	module


      


      	rdf


      	read() (GTF.Entry method)


      	readAndIndex() (in module Bed)

      
        	(in module GTF)


      


      	readAsIntervals() (in module GTF)


      	readContigSizes() (in module Genomics)


      	readFromFile() (AGP.AGP method)

      
        	(in module GTF)


      


      	ReadPeptideSequences() (in module Genomics)


      	ReconciliateByRio() (in module TreeTools)


      	Record (class in Fastq)


      	rect (class in SVGdraw)


      	reference() (Variants.Variant property)


      	regex2iupac() (in module Motifs)


      	relabel() (Tree.Tree method)


      	relbezier() (SVGdraw.pathdata method)


      	relellarc() (SVGdraw.pathdata method)


      	relhline() (SVGdraw.pathdata method)


      	relline() (SVGdraw.pathdata method)


      	relmove() (SVGdraw.pathdata method)


      	relqbezier() (SVGdraw.pathdata method)


  

  	
      	relsmbezier() (SVGdraw.pathdata method)


      	relsmqbezier() (SVGdraw.pathdata method)


      	relvline() (SVGdraw.pathdata method)


      	RemoveFrameShiftsFromAlignment() (in module Genomics)


      	RemoveIntervalsContained() (in module Intervals)


      	RemoveIntervalsSpanning() (in module Intervals)


      	replicate


      	Reroot() (in module TreeTools)


      	rescaleBranchLengths() (Tree.Tree method)


      	resolveAmbiguousNA() (in module Genomics)


      	resolveReverseAmbiguousNA() (in module Genomics)


      	Result (class in Stats)


      	reverse_complement() (in module Genomics)


      	rewind() (dictzip.GzipFile method)


      	rfnr() (Stats.ROCResult property)


      	
    RLE

      
        	module


      


      	ROCResult (class in Stats)


      	root_at_node() (Tree.Tree method)


      	root_balanced() (Tree.Tree method)


      	root_midpoint() (Tree.Tree method)


      	rtpr() (Stats.ROCResult property)


      	run() (WrapperCodeML.Evolver method)


      	runEvolver() (in module WrapperCodeML)


  





S


  	
      	sam


      	sample() (in module Iterators)


      	savitzky_golay() (in module Stats)


      	Scale() (in module Histogram)


      	score (Bed.Bed attribute)

      
        	(GTF.Entry attribute)


      


      	script (class in SVGdraw)


      	seq (Fastq.Record attribute)


      	sequence (FastaIterator.FastaRecord attribute)


      	SequencePairInfo (class in Genomics)


      	SequencePairInfoCodons (class in Genomics)


      	
    SequencePairProperties

      
        	module


      


      	SequencePairPropertiesBaseML (class in SequencePairProperties)


      	SequencePairPropertiesCountsCodons (class in SequencePairProperties)


      	SequencePairPropertiesCountsNa (class in SequencePairProperties)


      	SequencePairPropertiesDistance (class in SequencePairProperties)


      	SequencePairPropertiesPID (class in SequencePairProperties)


      	
    SequenceProperties

      
        	module


      


      	SequenceProperties (class in SequenceProperties)


      	SequencePropertiesAA (class in SequenceProperties)


      	SequencePropertiesAminoAcids (class in SequenceProperties)


      	SequencePropertiesBias (class in SequenceProperties)


      	SequencePropertiesCodons (class in SequenceProperties)


      	SequencePropertiesCodonTranslator (class in SequenceProperties)


      	SequencePropertiesCodonUsage (class in SequenceProperties)


      	SequencePropertiesCounts (class in SequenceProperties)


      	SequencePropertiesCpg (class in SequenceProperties)


      	SequencePropertiesDegeneracy (class in SequenceProperties)


      	SequencePropertiesDN (class in SequenceProperties)


      	SequencePropertiesEntropy (class in SequenceProperties)


      	SequencePropertiesGaps (class in SequenceProperties)


      	SequencePropertiesHid (class in SequenceProperties)


      	SequencePropertiesLength (class in SequenceProperties)


      	SequencePropertiesNA (class in SequenceProperties)


      	SequencePropertiesSequence (class in SequenceProperties)


      	set (class in SVGdraw)


      	setConverter() (IndexedFasta.cgatIndexedFasta method)


      	setDefaultCaseList() (CBioPortal.CBioPortal method)


      	setDefaultStudy() (CBioPortal.CBioPortal method)


      	setFormat() (Stats.DistributionalParameters method)


      	setFrequencies() (in module RateEstimation)


      	setName() (in module Bed)


      	SetOptions() (WrapperCodeML.BaseML method)

      
        	(WrapperCodeML.CodeML method)


      


  

  	
      	
    SetTools

      
        	module


      


      	setTranslator() (IndexedFasta.cgatIndexedFasta method)


      	setTree() (WrapperCodeML.Evolver method)


      	setUniformFrequencies() (WrapperCodeML.Evolver method)

      
        	(WrapperCodeML.EvolverBaseml method)


      


      	shift() (in module cgat.tools.bed2bed)


      	ShortenIntervalsOverlap() (in module Intervals)


      	Simple (class in IndexedGenome)


      	smbezier() (SVGdraw.pathdata method)


      	SmoothWrap() (in module Histogram)


      	smqbezier() (SVGdraw.pathdata method)


      	sort() (IGV.IGV method)


      	SortPerContig() (in module GTF)


      	source (GTF.Entry attribute)


      	spannedtext (class in SVGdraw)


      	Species2Genes() (in module TreeTools)


      	sphinxreport


      	splitFasta() (in module IndexedFasta)


      	
    Sra

      
        	module


      


      	sra


      	start (Bed.Bed attribute)

      
        	(GTF.Entry attribute)


      


      	startIGV() (in module IGV)


      	statistic() (Stats.PairedTTest property)


      	
    Stats

      
        	module


      


      	stderr


      	stdin


      	stdout


      	stop (class in SVGdraw)


      	strand (Bed.Bed attribute)

      
        	(GTF.Entry attribute)


      


      	String2Alignment() (in module Genomics)


      	String2Location() (in module Genomics)


      	style (class in SVGdraw)


      	submit host


      	Summary (class in Stats)


      	svg

      
        	(class in SVGdraw)


      


      	
    SVGdraw

      
        	module


      


      	SVGelement (class in SVGdraw)


      	switch (class in SVGdraw)


      	switchTargetStrand() (Blat.Match method)


      	symbol (class in SVGdraw)


  





T


  	
      	target


      	task


      	test directory


      	text (class in SVGdraw)


      	textpath (class in SVGdraw)


      	thickEnd (Bed.Bed attribute)


      	thickStart (Bed.Bed attribute)


      	title (class in SVGdraw)

      
        	(FastaIterator.FastaRecord attribute)


      


      	tn() (Stats.ROCResult property)


      	tnr() (Stats.ROCResult property)


      	to_string() (Tree.Tree method)


      	toDot() (in module GTF)


      	toIntervals() (Bed.Bed method)


      	toIntronIntervals() (in module GTF)


      	
    tools.bam_vs_gtf

      
        	module


      


      	toPhred() (Fastq.Record method)


      	toSequence() (in module GTF)


      	tp() (Stats.ROCResult property)


      	tpr() (Stats.ROCResult property)


      	track


      	Track (class in Bed)


      	track_iterator() (in module GTF)


      	Transcript2GeneTree() (in module TreeTools)


  

  	
      	transcript_id (GTF.Entry attribute)


      	transcript_iterator() (in module GTF)


      	translate() (in module Genomics)


      	TranslateDNA2Protein() (in module Genomics)


      	Translator (class in IndexedFasta)


      	TranslatorBytes (class in IndexedFasta)


      	TranslatorPhred (class in IndexedFasta)


      	TranslatorRange200 (class in IndexedFasta)


      	TranslatorSolexa (class in IndexedFasta)


      	traverseGraph() (in module TreeTools)


      	
    Tree

      
        	module


      


      	Tree (class in Tree)


      	Tree2Graph() (in module TreeTools)


      	Tree2Newick() (in module TreeTools)


      	TreeDFS() (in module TreeTools)


      	
    TreeTools

      
        	module


      


      	tref (class in SVGdraw)


      	trim() (Fastq.Record method)


      	trim5() (Fastq.Record method)


      	truncate() (in module Intervals)

      
        	(Tree.Tree method)


      


      	tspan (class in SVGdraw)


      	tss


      	tsv


  





U


  	
      	unionIntersectionMatrix() (in module SetTools)


      	Unroot() (in module TreeTools)


      	updateNexus() (in module Tree)


      	updateProperties() (SequenceProperties.SequencePropertiesDegeneracy method)

      
        	(Stats.DistributionalParameters method)


      


  

  	
      	updateVariants() (in module Variants)


      	upper() (AString.AString method)


      	UsageError


      	use (class in SVGdraw)


  





V


  	
      	value() (Stats.ROCResult property)


      	Variant (class in Variants)


      	
    Variants

      
        	module


      


      	
    VCF

      
        	module


      


  

  	
      	vcf


      	VCFEntry (class in VCF)


      	VCFFile (class in VCF)


      	verify() (in module IndexedFasta)


      	view (class in SVGdraw)


      	vline() (SVGdraw.pathdata method)


  





W


  	
      	wiggle


      	
    WrapperCodeML

      
        	module


      


      	Write() (in module Histogram)


      	WriteAlignment() (WrapperCodeML.CodeML method)


      	writeControlFile() (WrapperCodeML.CodeML method)

      
        	(WrapperCodeML.Evolver method)


        	(WrapperCodeML.EvolverBaseml method)


      


  

  	
      	writeFragments() (in module IndexedFasta)


      	WriteNexus() (in module TreeTools)


      	writeSets() (in module SetTools)


      	writeToFile() (Tree.Tree method)


      	WriteTree() (WrapperCodeML.CodeML method)


  





X


  	
      	xuniqueCombinations() (in module SetTools)


  





Y


  	
      	yaml


  







            

          

      

      

    

  

  
    
    

    Using CGAT tools - Recipes
    

    

    

    
 
  

    
      
          
            
  
Using CGAT tools - Recipes

In this section you will find representative examples for using tools
developed in CGAT. The recipes presented aim to provide intuitive
real-life examples of CGAT script use for the analysis of genomic
datasets. If there is a tool in the CGAT collection for which you
would like a use case then please post a request on the CGAT users
group [https://groups.google.com/forum/?fromgroups#!forum/cgat-user-group] website.

The recipes are implemented as ipython [http://ipython.org/] notebooks.


	Recipe02 Plotting read-density in Intervals
	Illustrate how to plot read density in a large number of
genomic intervals, for example in the ChIP-seq experiment.



	Recipe03 Calculating CpG content in promotors
	Illustrate how to caluclate CpG content from
a gene list of genes.



	Recipe04 Plotting meta-gene profiles
	Illustrate how to compute meta-gene profiles.



	Recipe05 Stripping Bam Files
	Illustrate how to remove sequence and/or
quality information from BAM files and
how to put it back.






Tools relevant for RNA-seq

Below is a list of tools that are of interest for RNA-seq
analysis.

<no title>


This script takes a GTF formatted file and outputs for each
gene or transcript one or more annotations that are computed by
integrating the gene/transcripts with additional data. For example,
by giving it a BAM formatted file, it will output the
number of reads overlapping with a particular transcript. Adding
another GTF file with a reference gene set will annotate
each transcript according to the overlap and classify it as
fragment, novel, etc. The tabular output from one or more
gtf2table runs together with additional annotation data can
be used to extract transcripts/genes of interest, for example, to
select genes of high G+C content that have anti-sense expression
and are novel.




<no title>


This script manipulates a counts table such as one created by
<no title> or featureCounts. It can
normalize, filter, or compute random permutations for post-hoc
power analysis.




<no title>


(an older version of this is <no title>). This script
takes a table with count data and applies statistical tests to
detect differences between sample groups. It wraps several methods
of relevance in RNA-seq analysis such as DEseq and
EdgeR.




gtf2gtf.py - manipulate transcript models


This script allows manipulation of GTF files such as sorting,
filtering, renaming but also manipulation of gene models such as
combining transcripts into genes, etc.




diff_gtf.py - compute overlap between multiple gtf files


This scripts compares two gene sets and outputs the number of
shared and unique genes, exons and bases. These are standard
metrics used in gene-prediction.




gtfs2tsv.py - compare two genesets


This scripts compares two gene sets and outputs lists of
shared and unique genes.




gtf2tsv.py - convert gtf file to a tab-separated table


This script converts a GTF formatted file into tabular
format including the transcript/gene attributes. This is useful for
uploading the geneset into a database.




<no title>


This script generates a distance matrix for time-series data.




<no title>


This script normalizes and transforms RNA-seq time-series data.




All these scripts work from and output standard genomic file formats
and are thus easily integrated with other tools such as
bedtools.

There are some additional scripts for gene-set manipulation that might
be of interest:

<no title>

<no title>





            

          

      

      

    

  

  
    
    

    Documentation coverage
    

    

    

    
 
  

    
      
          
            
  
Documentation coverage


Note

To update the doc coverage, you must set the COMPUTE_COVERAGE
variable in the makefile:

make html COMPUTE_COVERAGE=1







The sections below list python classes and functions
that have no associated doc string:







            

          

      

      

    

  

  
    
    

    Release Notes
    

    

    

    
 
  

    
      
          
            
  
Release Notes

Notes on each release are below.


Release 0.4.0


	contributions by Genomics PLC ; https://github.com/cgat-developers/cgat-apps/pull/2


	update installation and conda environments ;  https://github.com/cgat-developers/cgat-apps/pull/4


	updated conda environments and README ; https://github.com/cgat-developers/cgat-apps/pull/5


	update conda from 4.3 to 4.5 (solving “CXXABI_1.3.9 not found” error ; https://github.com/ContinuumIO/anaconda-issues/issues/5191) ; https://github.com/cgat-developers/cgat-apps/compare/b1bf0298f984…1f3ebb10ec9b [https://github.com/cgat-developers/cgat-apps/compare/b1bf0298f984...1f3ebb10ec9b]


	new way of activating conda environments ; https://github.com/cgat-developers/cgat-apps/pull/9








            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    Glam2.py - Parser for MAST files.
    

    

    

    
 
  

    
      
          
            
  
Glam2.py - Parser for MAST files.


	Tags

	Python





As of biopython 1.5.6, the MAST parser is broken.


	
Glam2.parse(infile)

	parse Glam2 output.








            

          

      

      

    

  

  
    
    

    Glam2Scan.py - Parser for MAST files
    

    

    

    
 
  

    
      
          
            
  
Glam2Scan.py - Parser for MAST files


	Tags

	Python





As of biopython 1.5.6, the MAST parser is broken.


	
class Glam2Scan.Match

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a Glam2Scan entry.






	
Glam2Scan.parse(infile)

	parse Glam2Scan output.








            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Functions that read and write gzipped files.

The user of the file doesn’t have to worry about the compression.
Seeks are allowed, but are efficient only for files compressed by
the dictzip utility (which adhere to the gzip format).  Files may
be concatenated to overcome dictzip’s 1.8 Gb size limit.


	
class dictzip.GzipFile(filename=None, mode=None, compresslevel=9, fileobj=None, buffersize=None, chunksize=58315)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

The GzipFile class simulates most of the methods of a file object with
the exception of the readinto() and truncate() methods.

Constructor for the GzipFile class.

At least one of fileobj and filename must be given a
non-trivial value.

The new class instance is based on fileobj, which can be a regular
file, a StringIO object, or any other object which simulates a file.
It defaults to None, in which case filename is opened to provide
a file object.

When fileobj is not None, the filename argument is only used to be
included in the gzip file header, which may includes the original
filename of the uncompressed file.  It defaults to the filename of
fileobj, if discernible; otherwise, it defaults to the empty string,
and in this case the original filename is not included in the header.

The mode argument can be any of ‘r’, ‘rb’, ‘a’, ‘ab’, ‘w’, or ‘wb’,
depending on whether the file will be read or written.  The default
is the mode of fileobj if discernible; otherwise, the default is ‘rb’.
Be aware that only the ‘rb’, ‘ab’, and ‘wb’ values should be used
for cross-platform portability.

The compresslevel argument is an integer from 1 to 9 controlling the
level of compression; 1 is fastest and produces the least compression,
and 9 is slowest and produces the most compression.  The default is 9.

A nonzero buffersize argument instructs GZip to do buffered compression,
allowing it to include a dictzip field in the header with flush points
for random access.  The chunksize argument determines the distance between
flush points; smaller values means faster random access but lower
compression.  The default value is close to maximum compression.


	
fileno()

	Invoke the underlying file object’s fileno() method.

This will raise AttributeError if the underlying file object
doesn’t support fileno().






	
rewind()

	Return the uncompressed stream file position indicator to the
beginning of the file










	
dictzip.open(filename, mode='rb', compresslevel=9, buffersize=None, chunksize=58315)

	Shorthand for GzipFile(filename, mode, compresslevel, buffersize, chunksize).

The filename argument is required; mode defaults to ‘rb’, compresslevel
defaults to 9, buffersize to None (no random access points) and chunksize to 58315
(good compression but slowish seeks; irrelevant without random access points)







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  

            

          

      

      

    

  

  
    
    

    Testing for Functional enrichment
    

    

    

    
 
  

    
      
          
            
  
Testing for Functional enrichment

This tutorial demonstrates the usage of gat with a simple example -
where does a transcription factor bind in the genome?

This tutorial uses the SRF data set described in Valouev et
al. (2008) [http://www.ncbi.nlm.nih.gov/pubmed/19160518]. The data sets used in this tutorial are available at:

http://www.cgat.org/~andreas/sample_data/srf.hg19.bed.gz

This bed formatted file contains 556 high confidence peaks
from the analysis of Valouev et al. (2008) [http://www.ncbi.nlm.nih.gov/pubmed/19160518] mapped to human
chromosome hg19.

We want to find out, where these binding sites are located in the
genome. First let us download the genomic sequence for hg19 and
index it:

wget -qO- http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
| cgat index_fasta --file-format=tar.gz hg19 -
> hg19.log





Next, we need to define where intronic and intergenic regions are
located in the genome. We do this by by obtaining the latest geneset
from ENSEMBL_ and pushing it through a sequence of commands:

wget -qO- ftp://ftp.ensembl.org/pub/release-72/gtf/homo_sapiens/Homo_sapiens.GRCh37.72.gtf.gz
| gunzip
| awk '$2 == "protein_coding"'
| cgat gff2gff --genome-file=hg19 --method=sanitize=genome --skip-missing
| cgat gtf2gtf --method=sort --sort-order=gene
| cgat gtf2gtf --method=merge-exons --with-utr
| cgat gtf2gtf --method=filter --filter-method=longest-gene
| cgat gtf2gtf --method=sort --sort-order=position
| cgat gtf2gff --genome-file=hg19 --flank-size=5000 --method=genome
| gzip
> annotations.hg19.gff.gz





The commands do the following.


	Reconcile the chromosome names in the gene set (ENSEMBL: 1,2,3)
with the UCSC convention (chr1,chr2,chr3):

| cgat gff2ff --genome-file=hg19 --method=sanitize=genome --skip-missing







	Sort the gene set by gene making sure that all exons within a gene
appear in a block:

| cgat gtf2gtf --method=merge-exons --with-utr







	Merge overlapping exons from alternative transcripts of the same gene:

| cgat gtf2gtf --method=merge-exons --with-utr







	Resolve nested genes. In nested genes a genomic region might be
both defined intronic and intergenic. Here, we select the longer
one:

| cgat gtf2gtf --method=filter --filter-method=longest-gene







	Sort by genomic position:

| cgat gtf2gtf --method=sort --sort-order=position







	Define intronic, intergenic and other gene set based annotations:

| cgat gtf2gff --genome-file=hg19 --flank-size=5000 --method=genome









The tool gff2stats

We can now use the file annotations.hg19.gff.gz to classify
individual peaks with the <no title> tool:

zcat srf.hg19.bed.gz
| cgat bed2table --genome-file=hg19 --counter=classify-chipseq --gff-file=annotations.hg19.gff.gz
| gzip
> srf.hg19.tsv.gz





The table srf.hg19.tsv.gz contains a row for each interval in
the input file srf.hg19.bed.gz describing which genomic
features it overlaps and assigns it to a category such as introning,
intergenic, etc.. We can upload this file into a database or view in
excel to easily filter and summarize the data.

To get a more global view of where the transcription factor binds,
we make use of the gat [http://code.google.com/p/genomic-association-tester/] tool. Gat tests if two sets of genomic
features are overlapping more - or less - than expected by chance
through simulation. Note that gat [http://code.google.com/p/genomic-association-tester/] needs to be installed separately
(pip install gat).

For gat, we need the file with genomic annotations
(annotations.hg19.gff.gz) we created previously and a workspace - a
set of genomic regions that are accessible for simulation. Here, we
will use the full genome for simulation excluding regions that are
gaps as we do not expect to be able to detect transcription factor
binding sites in those in an NGS experiment.  To get these regions, we
use the fasta2bed.py - segment sequences tool:

cat hg19.fasta
| cgat fasta2bed --method=ungapped --min-gap-size=100
| awk '$1 ~ /^chr/'
| cut -f 1,2,3
| gzip
> ungapped.hg19.bed.gz





Gat needs bed formatted input files, so let us quickly convert
annogations.hg19.gff.gz:

zcat annogations.hg19.gff.gz
| cgat gff2bed.py
| gzip
> annotations.bed.gz





We are now ready to run gat:

gat-run.py
   --ignore-segment-tracks
   --segments=srf.hg19.bed.gz
   --annotations=annotations.hg19.bed.gz
   --workspace-bed-file=ungapped.hg19.bed.gz
   --num-samples=1000
   --log=gat.log
| gzip
> gat.out





The option –ignore-segment-tracks tells gat to ignore the fourth
column in the tracks file and assume that all intervals in
this file belong to the same track. If not given, each
interval would be treated separately.

The above statement finishes in a few seconds. With large interval
collections or many annotations, gat might take a while. It is thus
good practice to always save the output in a file. The option –log
tells gat to save information or warning messages into a separate log
file.

The first 11 columns of the output file are the most informative:
















	track

	annotation

	observed

	expected

	CI95low

	CI95high

	stddev

	fold

	l2fold

	pvalue

	qvalue



	merged

	telomeric

	0

	69.7440

	0.0000

	200.0000

	59.6216

	0.0141

	-6.1445

	2.5100e-01

	3.9443e-01



	merged

	intergenic

	6200

	13909.1770

	12989.0000

	14800.0000

	570.3231

	0.4458

	-1.1656

	1.0000e-03

	2.2000e-03



	merged

	intronic

	8415

	11401.6660

	10440.0000

	12345.0000

	577.7517

	0.7381

	-0.4382

	1.0000e-03

	2.2000e-03



	merged

	UTR3

	284

	305.5370

	114.0000

	500.0000

	120.2095

	0.9297

	-0.1051

	4.3000e-01

	5.2556e-01



	merged

	unknown

	0

	0.0140

	0.0000

	0.0000

	0.3603

	0.9862

	-0.0201

	9.9800e-01

	9.9800e-01



	merged

	frameshift

	0

	0.0050

	0.0000

	0.0000

	0.0947

	0.9950

	-0.0072

	9.9700e-01

	9.9800e-01



	merged

	3flank

	800

	699.4930

	400.0000

	1045.0000

	187.2328

	1.1435

	0.1934

	3.0300e-01

	4.1662e-01



	merged

	CDS

	758

	392.1510

	192.0000

	611.0000

	131.0955

	1.9306

	0.9490

	3.0000e-03

	5.5000e-03



	merged

	flank

	1335

	176.1320

	50.0000

	350.0000

	90.7093

	7.5424

	2.9150

	1.0000e-03

	2.2000e-03



	merged

	5flank

	6224

	742.0590

	450.0000

	1071.0000

	191.1824

	8.3775

	3.0665

	1.0000e-03

	2.2000e-03



	merged

	UTR5

	3784

	104.0220

	0.0000

	237.0000

	68.5653

	36.0401

	5.1715

	1.0000e-03

	2.2000e-03






The first two columns contain the name of the track and
annotation that are being compared. The columns
observed and expected give the observed and expected
nucleotide overlap, respectively, between the track and annotation.

The following columns CI95low, CI95high, stddev give 95% confidence
intervals and the standard deviation of the sample distribution,
respectively.

The fold column is the fold enrichment or depletion and is
computed as the ratio of observed over expected. The
column l2fold is the log2 of this ratio.

The column pvalue gives the empirical p-value, i.e. in what
proportion of samples was a higher enrichment or lower depletion
found than the one that was observed.

The column qvalue lists a multiple testing corrected p-value.
Setting a qvalue threshold and accepting only those comparisons with a
qvalue below that threshold corresponds to controlling the false discovery
rate at that particular level.




            

          

      

      

    

  

  
    
    

    Assessing CpG content in long non-coding RNA promoters
    

    

    

    
 
  

    
      
          
            
  
Assessing CpG content in long non-coding RNA promoters

The description of pervasive transcription across many mammalian genomes has sparked an interest
in the role of long non-coding RNAs in diverse biological systems. Transcripts derived from non-coding
loci have been shown to be important in a number of different processes including development and cancer.
However, some features that are normally associated with protein coding genes are not observed in lncRNAs e.g
they are less conserved. Protein coding gene promoters have a characteristically high GC content and CpG
density. But do lncRNAs display the same bias in their promoters? In this example we show you how to use
CGAT tools to answer this question. We will be using:

gtf2gtf.py
gtf2gff.py
gff2bed.py
bed2fasta.py
fasta2table.py





Our initial input file is a gtf formatted file containing genomic coordinates and annotations for
a set of lncRNAs - lncRNA.gtf.gz. We can compute the GC and CpG composition using a single command line
statement using multiple CGAT tools. However, as described in Quickstart, we require an CGAT indexed
genome as input to both gtf2gff.py and bed2fasta.py. The first step is therefore to create the indexed genome.

In our example our lncRNA transcript models are from an RNA-seq experiment in human cells. We can index the
human hg19 reference genome by downloading the fasta formatted genome from the UCSC website
and running index_fasta.py:

wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz | index_fasta.py hg19 > hg19.log





We can then use this indexed genome as additional input when required. The code to generate a table with GC content and CpG
composition looks like:

zcat lncRNA.gtf.gz
| gtf2gtf.py --method=sort --sort-order=gene
| gtf2gtf.py --method=merge-transcripts
| gtf2gff.py --genome-file=hg19 --method=promotors -p 1500 --method=sort --sort-order
| gff2bed.py
| bed2fasta.py --genome-file=hg19
| fasta2table.py --section=cpg
| gzip
> lncRNA_cpg.tsv.gz





The above commands in turn (1) sorts the input file by gene identifier, (2) merges transcripts that have the same gene identifier,
(3) produces a set of lncRNA promoters 1.5Kb upstream of the lncRNA transcription start sites
(using --method=promotors in combination with -p 1500), (4) converts gff formatted promoters into bed format,
(5) retrieves sequences from the human hg19 reference genome for lncRNA promoter intervals and (5) outputs statistics related
to nucleotide composition including CpG content (specified with the --section=cpg option).
The output file lncRNA_cpg.tsv.gz will be a tab-delimited text file which will look like:

























	id

	nC

	nG

	nA

	nT

	nN

	nUnk

	nGC

	nAT

	nCpG

	pC

	pG

	pA

	pT

	pN

	pUnk

	pGC

	pAT

	pCpG

	CpG_ObsExp



	ENSG00000224969.1 chr1:948573..950073 (+)

	423

	518

	277

	282

	0

	0

	941

	559

	71

	0.282000

	0.345333

	0.184667

	0.188000

	0.000000

	0.000000

	0.627333

	0.372667

	0.094667

	0.486048



	NONCO170 chr1:33464145..33465645 (+)

	418

	396

	359

	327

	0

	0

	814

	686

	37

	0.278667

	0.264000

	0.239333

	0.218000

	0.000000

	0.000000

	0.542667

	0.457333

	0.049333

	0.335291



	NONCO195 chr1:87239820..87241320 (+)

	354

	294

	425

	427

	0

	0

	648

	852

	13

	0.236000

	0.196000

	0.283333

	0.284667

	0.000000

	0.000000

	0.432000

	0.568000

	0.017333

	0.187363



	NONCO55 chr1:108591390..108592890 (+)

	296

	323

	471

	410

	0

	0

	619

	881

	9

	0.197333

	0.215333

	0.314000

	0.273333

	0.000000

	0.000000

	0.412667

	0.587333

	0.012000

	0.141202



	NONCO59 chr1:111181220..111182720 (+)

	270

	380

	452

	398

	0

	0

	650

	850

	9

	0.180000

	0.253333

	0.301333

	0.265333

	0.000000

	0.000000

	0.433333

	0.566667

	0.012000

	0.131579



	NONCO215 chr1:120190857..120192357 (+)

	350

	415

	384

	351

	0

	0

	765

	735

	62

	0.233333

	0.276667

	0.256000

	0.234000

	0.000000

	0.000000

	0.510000

	0.490000

	0.082667

	0.640275



	NONCO66 chr1:121117751..121119251 (+)

	374

	313

	340

	473

	0

	0

	687

	813

	16

	0.249333

	0.208667

	0.226667

	0.315333

	0.000000

	0.000000

	0.458000

	0.542000

	0.021333

	0.205020



	NONCO69 chr1:144569176..144570676 (+)

	233

	299

	498

	470

	0

	0

	532

	968

	21

	0.155333

	0.199333

	0.332000

	0.313333

	0.000000

	0.000000

	0.354667

	0.645333

	0.028000

	0.452151



	NONCO70 chr1:144592229..144593729 (+)

	382

	382

	361

	375

	0

	0

	764

	736

	53

	0.254667

	0.254667

	0.240667

	0.250000

	0.000000

	0.000000

	0.509333

	0.490667

	0.070667

	0.544804






The --section option specifies that we want to include statistics on CpG composition in the output. Alternative options
include:

length
na
aa
cpg
degeneracy
bias
codons
codon-usage
codon-translator
sequence





As the output is in tab separated format it is straight-forward to load into statistical/plotting software such as R and perform further
downstream analysis.




            

          

      

      

    

  

  
    
    

    Clustering metagenomic contigs on tetranucleotide frequency
    

    

    

    
 
  

    
      
          
            
  
Clustering metagenomic contigs on tetranucleotide frequency

Metagenomic sequencing has become a widely used method for assessing the
functional potential of microbial communities across a wide range of environments.
Often the first step in a metagenomic analysis is the assembly of short reads
into longer contigs - permitting gene/function predictions to be made. However, due to the
complexity of a sample, many contigs are often produced that represent a variety of species
that are present in the community. Assignment of contigs to species is non-trivial. Nevertheless,
researchers will often use nucleotide content to begin to cluster related contigs. A common
method is to compute tetranucleotide frequencies for each contig and cluster the results. Here
we explain how to use the CGAT script, fasta2kmercontent.py to calculate the tetranucleotide
frequencies for a set of contigs (up to 8-mers supported).

Our input is a fasta formatted file representing a set of contigs derived from a
metgenome assembly - metagenome_contigs.fasta. A simple command line statement will compute
the tetranucleotide frequency for the set of contigs:

cat metagenome_contigs.fa | fasta2kmercontent --kmer-size 4 --output-proportion > metagenome_tetranucleotide_freq.tsv





Notice that we specify the --output-proportion option in this example. This is because contigs
will be of different length and thus incomparable without this option.

The output will be a tab-delimited text file with contigs as columns and tetramers as rows.












	kmer

	Streptococcus_suis26

	Streptococcus_suis27

	Streptococcus_suis24

	Streptococcus_suis25

	Bacteroides_thetaiotaomicron101

	Bacteroides_thetaiotaomicron23



	GTAC

	0.0016393442623

	0.00234100663285

	0.00522778192681

	0.00265428002654

	0.00303990610329

	0.00334864510152



	CGAG

	0.0016393442623

	0.00195083886071

	0.00124470998257

	0.000663570006636

	0.00129694835681

	0.00128348645102



	GTAA

	0.00327868852459

	0.00390167772142

	0.0049788399303

	0.00729927007299

	0.0037646713615

	0.00467073264881



	CGAA

	0.00327868852459

	0.00429184549356

	0.00224047796863

	0.00199071001991

	0.00422828638498

	0.0042847216861



	AAAT

	0.0131147540984

	0.00819352321498

	0.00398307194424

	0.00729927007299

	0.00776115023474

	0.0080869296688



	CGAC

	0.0016393442623

	0.000390167772142

	0.00199153597212

	0.00132714001327

	0.00261443661972

	0.00177565042847



	GTAT

	0.00655737704918

	0.00156067108857

	0.00373412994772

	0.00398142003981

	0.00450704225352

	0.00579981471474



	AGTG

	0.0

	0.00546234880999

	0.00323624595469

	0.00398142003981

	0.00215962441315

	0.00340654674593



	AGTA

	0.00327868852459

	0.00429184549356

	0.00373412994772

	0.00331785003318

	0.00409330985915

	0.00409171620474



	…

	…

	…

	…

	…

	…

	…






As the output is in tab separated format it is straight-forward to load into statistical/plotting software such as R and perform further
downstream analysis. For example, we can perform a simple clustering analysis on the results. Start R and type:

R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.


> tetra <- read.csv("metagenome_tetranucleotide_freq.tsv", header = T, stringsAsFactors = F, sep = "\t", row.names = 1)
> plot(hclust(dist(t(dat))))





This will produce a cluster dendrogram like the one displayed below.

[image: ../_images/metagenome_contigs_tetra.png]
This example is using data from simulated metagenomic data and we therefore know the source of the contigs. We can see that it
is possible to separate Streptococcus species from Bacteroides based on tetranucleotide composition. There is less separation
between the two closely related bacteroides species. Although this example dataset is unrealistically simple, it emphasises
the ease with which CGAT tools can be used for quick assessment of data.




            

          

      

      

    

  

  
    
    

    What is the binding profile of NFKB across gene models?
    

    

    

    
 
  

    
      
          
            
  
What is the binding profile of NFKB across gene models?

After processing RNA-seq data through alignment, gene/transcript abundance estimation and differential
expression analysis, we are left with an unannotated list of differentially expressed genes. We may want
to know whether there is evidence to suggest that these genes are regulated by a transcription factor
of interest. We can answer this using ChIP-seq data that we ourselves have generated or by using
public resources such as ENCODE.

For example, we have carried out an RNA-seq experiment in lymphoblastoid cell lines (LCLs) looking at
the effect of TNF-a stimulation on gene expression. Using one of the many tools for conducting
differential expression analysis we have arrived at a set of 133 genes that are up-regulated when
LCLs are stimulated with TNF-a.

We know that the main transcription factor that drives expression of inflammatory genes using other
immune stimulators is NFKB. We would therefore like to answer the question:

Is there evidence to support a role for NFKB in the regulation of genes regulated by TNF-a in LCLs?

ENCODE have produced many ChIP-seq data sets and by a stroke of luck they have NFKB ChIP-seq data in
TNF-a stimulated LCLs. In an exploratory phase of the analysis, we would like to see what the profile
of NFKB binding is across genes i.e does it bind predominantly at the TSS, exons or 3’ UTR. We
can do this fairly easily with a few files and a few commands.

The input files that we require are:


	A gtf file  containing a complete set of known protein coding gene transcripts, which may
be downloaded from ENSEMBL by typing:

wget ftp://ftp.ensembl.org/pub/release-73/gtf/homo_sapiens/Homo_sapiens.GRCh37.73.gtf.gz -o logfile







	A file containing aligned NFKB ChIP-seq reads in bam format, which is available via UCSC:

wget http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam -o logfile

wget http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam.bai -o logfile









We can then take all protein coding genes from this geneset with an awk statement:

zcat Homo_sapiens.GRCh37.73.gtf.gz  | awk '$2=="protein_coding"' | gzip > coding_geneset.gtf.gz





Using the CGAT tool bam2geneprofile we can then assess the binding profile of NFKB across gene models:

cgat bam2geneprofile --bam-file=wgEncodeSydhTfbsGm10847NfkbTnfaIggrabAlnRep1.bam
                     --gtf-file=coding_geneset.gtf.gz
                     --method=geneprofile
                     --profile_normalization=counts
                     --output-filename-pattern=nfkb_profile_%s





This statement will produce a matrix as an output file named “nfkb_profile.geneprofile.matrix.tsv.gz”
with the following format:










	bin

	region

	region_bin

	counts



	0

	upstream

	0

	0.22691292876



	1

	upstream

	1

	0.224274406332



	2

	upstream

	2

	0.221635883905



	3

	upstream

	3

	0.192612137203



	4

	upstream

	4

	0.221635883905



	5

	upstream

	5

	0.213720316623



	6

	upstream

	6

	0.213720316623



	7

	upstream

	7

	0.200527704485



	8

	upstream

	8

	0.20580474934









These data are amenable to further manipulation and visualisation. For example, we can use R to produce a profile plot
over the gene model. Start R and type:

R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
   Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> profile <- read.csv("nfkb_profile.geneprofile.matrix.tsv.gz", header = T, stringsAsFactors = F, sep = "\t")

> plot(profile$bin, profile$counts, cex = 0, xaxt = "none")

> lines(profile$bin, profile$counts, col = "blue")

> abline(v = c(1000, 2000), lty = 2)

> mtext("upstream", adj = 0.1)

> mtext("exons", adj = 0.5)

> mtext("downstream", adj = 0.9)





This set of commands will produce the figure shown.

[image: ../_images/nfkb_profile.png]
This plot displays the predominance of NFKB binding at transcription start sites of protein coding genes.


Visulazing ChIP-seq read coverage across NFKB binding intervals

While NFKB binds to the TSSs of protein coding genes, it also binds to many intergenic regions of the genome. In addition
to meta-gene profiles we may also want to know the chromatin state at which NFKB binding occurs. For example, we can
integrate additional histone modification ChIP-seq data from the ENCODE project. H3K4me3 and H3K4me1 mark promoters and
enhancers, respectively. We would like to visualise the profile of these marks at all the genomic locations of
NFKB binding.

For this example we require three further files:


	A file containing bed intervals describing NFKB peaks (NFKB.bed [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/nfkb.bed]), which may either be downloaded directly or
created from the earlier bam file of NFKB ChIP-seq reads using a peak caller such as MACS.


	files containing aligned H3K4me1 and H3K4me3 ChIP-seq reads in bam format (H3K4me3.bam [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/H3K4me3.bam], H3K4me1.bam [http://www.cgat.org/~jethro/cgat/recipes/nfkb_profile/H3K4me1.bam])




Using the CGAT tool bam2peakshape it is possible to produce a matrix depicting read coverage across all intervals in
the supplied bed file.

The following command line statement


	finds the peak of H3K4me3 read coverage within each interval


	calculates coverage across a 1000bp window centered around this peak


	outputs a matrix in which intervals are ranked by peak height.


	outputs an equivalent matrix depicting H3K4me1 coverage across the same windows:

cgat bam2peakshape   H3K4me3.bam
                     NFKB.bed
                     --control=H3K4me1.bam
                     --method=sort --sort-order=peak-height
                     --output-filename-pattern=peakshape.%s
                     > peakshape.table









Two files are produced named peakshape.matrix_peak_height.gz & peakshape.control_peak_height.gz that contain matrices
depicting H3K4me3 coverage and H3K4me1 coverage across intervals, respectively.

Both matrices are amenable to plotting as heatmaps using the R package gplots:

> library( gplots )

> library( RColorBrewer )

> # read the H3K4me3 matrix into R
> me3 <- read.csv( "peakshape.matrix_peak_height.gz", header=TRUE, sep="\t", row.names=1 )

> # convert to matrix
> me3.matrix <- as.matrix( me3 )

> # A proportion of NFkB intervals have no discernable H3K4me3 or H3K4me1 coverage. These are removed before plotting.
> me3.matrix <- me3.matrix[ c( 4000, 14906 ), ]

> # the remainder are plotted
> cols <- brewer.pal( 9, "Blues" )

> heatmap.2( me3.matrix, col=cols, Rowv=F, Colv=F, labRow="", key=FALSE, labCol="", trace="none", dendrogram="none", breaks=seq(0, 1000, 101) )

> # A second plot can be produced for the H3K4me1 data
> me1 <- read.csv( "peakshape.control_peak_height.gz", header=T, sep="\t", row.names=1 )

> me1.matrix <- as.matrix( me3 )

> me1.matrix <- me1.matrix[ c( 4000, 14906 ), ]

> cols <- brewer.pal( 9, "Greens" )

> heatmap.2( me1.matrix, col=cols, Rowv=F, Colv=F, labRow="", key=FALSE, labCol="", trace="none", dendrogram="none", breaks=seq(0, 100, 11))





The resulting plots indicate that a subset of NFKB binding intervals may be characterised on the basis of their chromatin state:


[image: ../_images/H3K4me3_heatmap.png]

H3K4me3




[image: ../_images/H3K4me1_heatmap.png]

H3K4me1







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 132, in main
    module.main(sys.argv)
AttributeError: module '__init__' has no attribute 'main'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'add_random_reads_to_bam'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'analyze_readpositions'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'annotator_distance'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bam2bidirectionaltranscription'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bam2profile'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bam2species_map'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bam2transcriptContribution'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'barplotGo'







            

          

      

      

    

  

  
    
    

    bcl2fastq.py - Wrapper that outputs fastq files from bcl files
    

    

    

    
 
  

    
      
          
            
  
bcl2fastq.py - Wrapper that outputs fastq files from bcl files


	Tags

	BCL FASTQ Conversion






Purpose

Convert the raw data from an Illumina Sequencing Run to fastq formatted files.



Usage

Example:

python bcl2fastq.py -p "--runfolder-dir <RunFolder>"





This command demultiplexes and converts BCL files in the given run folder directory.
All arguments for Illumina’s bcl2fastq software must be given with the -p argument.
Type:

python bcl2fastq.py --help





for command line help.



Documentation

Converts BCL files in a given run folder to fastq.



Command line options


	--arguments
	Supply arguments to be passed to Illumia’s bcl2fastq software.



	--output-dir
	Required if using –fastqc.



	--fastqc
	After converting BCL files, run all fastq files in FastQC.



	--fastqc-options
	Supply arguments to be passed to FastQC.



	--bcl2fastq-help
	Prints help for Illumina’s bcl2fastq software.







usage: bcl2fastq [-h] [-p ARGUMENTS] [-o OUTPUT] [-f] [-F FASTQC_OPTIONS] [-H]
                 [--timeit TIMEIT_FILE] [--timeit-name TIMEIT_NAME]
                 [--timeit-header] [--random-seed RANDOM_SEED] [-v LOGLEVEL]
                 [--log-config-filename LOG_CONFIG_FILENAME]
                 [--tracing {function}] [-? ?] [-I STDIN] [-L STDLOG]
                 [-E STDERR] [-S STDOUT]
bcl2fastq: error: argument -?: expected one argument







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bed2psl'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 129, in main
    module = imp.load_module(command, file, pathname, description)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 235, in load_module
    return load_source(name, filename, file)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 172, in load_source
    module = _load(spec)
  File "<frozen importlib._bootstrap>", line 696, in _load
  File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
  File "<frozen importlib._bootstrap_external>", line 728, in exec_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/bed2table.py", line 100, in <module>
    import cgat.SequenceProperties as SequenceProperties
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/SequenceProperties.py", line 49, in <module>
    import Bio.Alphabet.IUPAC
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/Bio/Alphabet/__init__.py", line 21, in <module>
    "Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information."
ImportError: Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information.







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'bigwig2hilbert'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'blast2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'calculate_histogram_2D'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  cgat.py - Computational Genomics Analysis Tools
===============================================

:Tags: Genomics

To use a specific tool, type::

    cgat <tool> [tool options] [tool arguments]

Tools are grouped by keywords. For this message and a list of
available keywords type::

    cgat --help

For a list of tools matching a certain keyword, type::

   cgat --help <keyword>

or::

   cgat --help all

for a list of all available tools.

To get help for a specific tool, type::

    cgat <tool> --help

cgat tools are grouped by keywords. The following keywords
are defined:

Genomics              FASTQ                 Annotation           
NGS                   GenomeAlignment       MultipleAlignments   
Geneset               PSL                   Counting             
BAM                   CHAIN                 Fasta                
Manipulation          Summary               Variants             
Intervals             Comparison            Protein              
BED                   FASTA                 WIGGLE               
GFF                   Sequences             BIGWIG               
Conversion            Genesets              BEDGRAPH             
Python                GTF







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 129, in main
    module = imp.load_module(command, file, pathname, description)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 235, in load_module
    return load_source(name, filename, file)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 172, in load_source
    module = _load(spec)
  File "<frozen importlib._bootstrap>", line 696, in _load
  File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
  File "<frozen importlib._bootstrap_external>", line 728, in exec_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/cgat2rdf.py", line 81, in <module>
    from rdflib import Graph
ModuleNotFoundError: No module named 'rdflib'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'cgat_add_preamble'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'cgat_list_dependencies'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'cgat_scan_email'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'chain2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'clusters2metrics'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'combine_files'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'combine_gff'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'combine_histograms'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'compare_clusters'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'compare_histograms'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'contigs2random_sample'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'contigs2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'convert_time2seconds'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'counts2counts'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'counts2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'coverage2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'csv2xls'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2bins'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2multiple_anova'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2resamples'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2roc'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2spike'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'data2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'diff_transcript_sets'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'diffgene2venn'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'distance2clusters'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'distance2merge'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'ena2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'expression2distance'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'expression2expression'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'extractseq'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'fasta2distances'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'fasta2gff'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'fasta2nj'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 129, in main
    module = imp.load_module(command, file, pathname, description)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 235, in load_module
    return load_source(name, filename, file)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 172, in load_source
    module = _load(spec)
  File "<frozen importlib._bootstrap>", line 696, in _load
  File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
  File "<frozen importlib._bootstrap_external>", line 728, in exec_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/fasta2table.py", line 118, in <module>
    import cgat.SequenceProperties as SequenceProperties
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/SequenceProperties.py", line 49, in <module>
    import Bio.Alphabet.IUPAC
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/Bio/Alphabet/__init__.py", line 21, in <module>
    "Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information."
ImportError: Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information.







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'fastq2N'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'fastq2solid'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'filter_reads'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'filter_tokens'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'formatMetagenemark'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'genelist_analysis'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'genes2genes'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'geo2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gff2plot'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gff2view'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gff_compare'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gff_decorate'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gi2parents'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'go2plot'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'go2svg'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gtf2alleles'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gtf2overlap'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gtf2reads'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 129, in main
    module = imp.load_module(command, file, pathname, description)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 235, in load_module
    return load_source(name, filename, file)
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 172, in load_source
    module = _load(spec)
  File "<frozen importlib._bootstrap>", line 696, in _load
  File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
  File "<frozen importlib._bootstrap_external>", line 728, in exec_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/tools/gtf2table.py", line 467, in <module>
    import cgat.GeneModelAnalysis as GeneModelAnalysis
  File "cgat/GeneModelAnalysis.pyx", line 30, in init cgat.GeneModelAnalysis
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/SequenceProperties.py", line 49, in <module>
    import Bio.Alphabet.IUPAC
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/Bio/Alphabet/__init__.py", line 21, in <module>
    "Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information."
ImportError: Bio.Alphabet has been removed from Biopython. In many cases, the alphabet can simply be ignored and removed from scripts. In a few cases, you may need to specify the ``molecule_type`` as an annotation on a SeqRecord for your script to work correctly. Please see https://biopython.org/wiki/Alphabet for more information.







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'gtfs2graph'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'histogram2histogram'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'histograms2kl'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'index2gff'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'intervaltable2bed'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'join_tables'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'liftover'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'list_overlap'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'maf2psl'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'maq2assembly'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'maq2psl'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'mask_fasta'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'matrix2matrix'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'matrix2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'merge_tables'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'modify_table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'numbers2rgb'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'plot_data'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'plot_histogram'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'plot_matrix'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'png2svg'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'probeset2gene'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2assembly'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2chain'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2fasta'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2gff'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2map'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2psl'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'psl2wiggle'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'quality2fasta'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'quality2masks'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'r_compare_distributions'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'r_mann_whitney_u'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'r_table2scatter'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'r_test'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'rename_links'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'revigo'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'runExpression'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'runMEDIPS'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'runSPP'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'runZinba'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'set_diff'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'simulate_function'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'snp2counts'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'snp2maf'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'snp2snp'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'snp2table'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'solexa2stats'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'sparse2full'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'split_genome'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'split_genomic_fasta_file'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'split_links'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'substitute_tokens'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'table2graph'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'tfbs2enrichment'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'timeseries2diffgenes'







            

          

      

      

    

  

  
    
    

    <no title>
    

    

    

    
 
  

    
      
          
            
  Traceback (most recent call last):
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/bin/cgat", line 11, in <module>
    sys.exit(main())
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/site-packages/cgat/cgat.py", line 128, in main
    (file, pathname, description) = imp.find_module(command, [path, ])
  File "/home/docs/checkouts/readthedocs.org/user_builds/cgat-apps/conda/stable/lib/python3.7/imp.py", line 297, in find_module
    raise ImportError(_ERR_MSG.format(name), name=name)
ImportError: No module named 'wig2wig'







            

          

      

      

    

  
nav.xhtml

    
      Table of Contents


      
        		
          CGAT 0.6.2 - Computational Genomics Analysis Tools
        


        		
          Mission statement
          
            		
              Other toolkits with similar functionality
            


          


        


        		
          Installation instructions
          
            		
              Quick installation
              
                		
                  Install using Conda
                


                		
                  Conda Installation
                


                		
                  Developers: try the installation script
                


                		
                  Install using pip
                


              


            


          


        


        		
          Using CGAT Tools
          
            		
              Command line usage
              
                		
                  Logging
                


                		
                  I/O redirection
                


              


            


            		
              Indexing genomes
            


            		
              Pipeline usage
            


          


        


        		
          Tool map
        


        		
          Tool reference
          
            		
              Genomic intervals/features
            


            		
              Gene sets
            


            		
              Sequence data
            


            		
              NGS data
            


            		
              Variants
            


            		
              Genomics
            


          


        


        		
          Contributing to CGAT code
          
            		
              Checklist for new scripts/modules
            


            		
              Building extensions
            


            		
              Writing recipes
            


            		
              Writing pipelines
            


          


        


        		
          Reference
          
            		
              Repository layout
            


            		
              API
              
                		
                  Scripts
                


                		
                  Modules
                


                		
                  Glossary
                


                		
                  Dependency graph
                


              


            


          


        


        		
          Release Notes
          
            		
              Release 0.4.0
            


          


        


        		
          Contributing to CGAT code
          
            		
              Checklist for new scripts/modules
            


            		
              Building extensions
            


            		
              Writing recipes
            


            		
              Writing pipelines
            


          


        


        		
          Testing
          
            		
              Regression testing of scripts
              
                		
                  Adding a new test manually
                


                		
                  Creating a test
                


                		
                  Running tests
                


              


            


            		
              Testing for style
            


            		
              Testing for import
            


            		
              Testing modules
            


            		
              Code coverage
            


          


        


        		
          Style Guide
          
            		
              Coding style
            


            		
              Where to put code
            


            		
              Pipelines
            


            		
              Other guidelines
            


            		
              Script options
            


            		
              Documentation
              
                		
                  Writing doc-strings
                


              


            


          


        


        		
          Documentation
          
            		
              Overview
            


            		
              Building the documentation
            


            		
              Writing documentation
            


            		
              Adding documentation
       